Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

On quasi-periodic solutions associated with the extended nonlinear feedback loop in the five-dimensional non-dissipative Lorenz model

Titelangaben

Faghih-Naini, Sara ; Shen, Bo-Wen:
On quasi-periodic solutions associated with the extended nonlinear feedback loop in the five-dimensional non-dissipative Lorenz model.
In: Skiadas, Christos H. (Hrsg.): CHAOS 2017 Proceedings. - Barcelona : International Society for the Advancement of Science and Technology , 2017 . - S. 197-213

Abstract

A recent study suggested that the nonlinear feedback loop of the three- dimensional non-dissipative Lorenz model (3D-NLM) serves as a nonlinear restoring force by producing nonlinear oscillatory solutions as well as linear periodic solutions near a non-trivial critical point. In this study, using a five-dimensional non-dissipative Lorenz model (5D-NLM), we discuss the role of the extension of the nonlinear feedback loop in producing quasi-periodic trajectories. By solving a locally linear 5D-NLM for an analytical solution, we illustrate that the extension of the nonlinear feedback loop in the 5D-NLM can produce two incommensurate frequencies whose rati o is irrational, yielding a quasi-periodic solution. The quasi-periodic solution trajectory moves endlessly on a torus but never intersects itself.
While the nonlinear feedback loop of the 3D-NLM consists of a pair of downscaling and upscaling processes, the extended feedback loop within the 5D-NLM additionally introduces two pairs of downscaling and upscaling processes that are enabled by two high wavenumber modes. The second pair of downscaling and upscaling processes provides a two-way interaction between the original (primary) Fourier modes of the 3D-NLM and the newly-added (secondary) Fourier modes of the 5D-NLM. The third pair of downscaling and upscaling processes involves interactions amongst the secondary modes. By comparing the numerical simulations using one- and two-way interactions, we illustrate that the system with a one-way interaction always produces periodic solutions with two commensurate frequencies. We also indicate that the two-way interaction is crucial for producing the quasi-periodic solution. Based on the current study using the 5D-NLM, and a recent study using a 7D non-dissipative LM, the statement "weather never repeats itself" is supported by the appearance of a quasi-periodic motion that results from the extension of nonlinear feedback loop, which is capable of producing two or more incommensurate frequencies, and may appear throughout the spatial mode-mode interactions rooted in the nonlinear temperature advection.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: non-dissipative Lorenz model; nonlinear feedback loop; quasi-periodicity; incommensurate frequency
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Professur Numerik partieller Differentialgleichungen
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Professur Numerik partieller Differentialgleichungen > Professur Numerik partieller Differentialgleichungen - Univ.-Prof. Dr. Vadym Aizinger
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Forschungseinrichtungen > Forschungszentren > Forschungszentrum für Modellbildung und Simulation (MODUS)
Forschungseinrichtungen > Forschungszentren > Forschungszentrum für Wissenschaftliches Rechnen an der Universität Bayreuth - HPC-Forschungszentrum
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke
000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 510 Mathematik
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Eingestellt am: 14 Nov 2019 08:17
Letzte Änderung: 14 Nov 2019 08:17
URI: https://eref.uni-bayreuth.de/id/eprint/53218