Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Is Weather Chaotic? : Coexistence of Chaos and Order within a Generalized Lorenz Model

Titelangaben

Shen, Bo-Wen ; Pielke, Roger A., Sr. ; Zeng, Xubin ; Baik, Jong-Jin ; Faghih-Naini, Sara ; Cui, Jialin ; Atlas, Robert:
Is Weather Chaotic? : Coexistence of Chaos and Order within a Generalized Lorenz Model.
In: Bulletin of the American Meteorological Society. Bd. 102 (2021) Heft 1 . - E148-E158.
ISSN 0003-0007
DOI: https://doi.org/10.1175/BAMS-D-19-0165.1

Abstract

By revealing two kinds of attractor coexistence within Lorenz models, we suggest that the entirety of weather possesses a dual nature of chaos and order with distinct predictability.Over 50 years since Lorenz’s 1963 study and a follow-up presentation in 1972, the statement "weather is chaotic" has been well accepted. Such a view turns our attention from regularity associated with Laplace’s view of determinism to irregularity associated with chaos. In contrast to single type chaotic solutions, recent studies using a generalized Lorenz model (GLM) have focused on the coexistence of chaotic and regular solutions that appear within the same model using the same modeling configurations but different initial conditions. The results, with attractor coexistence, suggest that the entirety of weather possesses a dual nature of chaos and order with distinct predictability. In this study, based on the GLM, we illustrate the following two mechanisms that may enable or modulate two kinds of attractor coexistence and, thus, contribute to distinct predictability: (1) the aggregated negative feedback of small-scale convective processes that can produce stable non-trivial equilibrium points and, thus, enable the appearance of stable steady-state solutions and their coexistence with chaotic or nonlinear oscillatory solutions, referred to as the 1st and 2nd kinds of attractor coexistence; and (2) the modulation of large-scale time varying forcing (heating) that can determine (or modulate) the alternative appearance of two kinds of attractor coexistence. Based on our results, we then discuss new opportunities and challenges in predictability research with the aim of improving predictions at extended-range time scales, as well as sub-seasonal to seasonal time scales.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Professur Numerik partieller Differentialgleichungen
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Professur Numerik partieller Differentialgleichungen > Professur Numerik partieller Differentialgleichungen - Univ.-Prof. Dr. Vadym Aizinger
Forschungseinrichtungen > Forschungszentren > Forschungszentrum für Modellbildung und Simulation (MODUS)
Forschungseinrichtungen > Forschungszentren > Forschungszentrum für Wissenschaftliches Rechnen an der Universität Bayreuth - HPC-Forschungszentrum
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke
000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 510 Mathematik
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Eingestellt am: 01 Okt 2020 09:03
Letzte Änderung: 27 Apr 2022 10:39
URI: https://eref.uni-bayreuth.de/id/eprint/57780