Title data
Jännsch, Yannick ; Leung, Jane J. ; Hämmerle, Martin ; Magori, Erhard ; Wiesner-Fleischer, Kerstin ; Simon, Elfriede ; Fleischer, Maximilian ; Moos, Ralf:
Pulsed potential electrochemical CO2 reduction for enhanced stability and catalyst reactivation of copper electrodes.
In: Electrochemistry Communications.
Vol. 121
(December 2020)
.
- No. 106861.
ISSN 1388-2481
DOI: https://doi.org/10.1016/j.elecom.2020.106861
Project information
Project title: |
|
||||
---|---|---|---|---|---|
Project financing: |
Bayerische Forschungsstiftung |
Abstract in another language
The electrochemical conversion of CO2 is a promising route to fuels and feedstocks. One of the great challenges in employing copper-based electrodes towards the electrocatalytic reduction of CO2 is the unsustainable production of hydrocarbons over time. In this study, we show that by introducing a periodic pulsed operational mode during controlled potential electrolysis using low pulse frequencies in the range of Hz, the stability of ethylene production can be greatly increased from less than 8 h to at least 16 h. Furthermore, the method enables the reactivation of catalysts already deactivated for ethylene production. A duty cycle of >80%, deployment of a flow cell set-up, and a negligible loss of charge from the short anodic pulses as compared to the charge during the CO2 reducing cathodic pulses are important aspects of this pulsed electrolysis considering future application in real cell reactors.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Keywords: | Electrochemical CO2 reduction; Pulsed potential electrolysis; Ethylene; Catalyst reactivation; Flow cell |
Institutions of the University: | Faculties > Faculty of Engineering Science Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos Profile Fields > Advanced Fields > Advanced Materials Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT Research Institutions > Research Units > ZET - Zentrum für Energietechnik |
Result of work at the UBT: | Yes |
DDC Subjects: | 600 Technology, medicine, applied sciences > 620 Engineering |
Date Deposited: | 18 Nov 2020 08:13 |
Last Modified: | 18 Nov 2020 08:13 |
URI: | https://eref.uni-bayreuth.de/id/eprint/59944 |