Titelangaben
    
    Grüne, Lars:
Computing Lyapunov functions using deep neural networks.
  
   
    
    In: Journal of Computational Dynamics.
      
      Bd. 8
      
      (2021)
       Heft  2
    .
     - S. 131-152.
    
    
ISSN 2158-2491
    
    
      
DOI: https://doi.org/10.3934/jcd.2021006
    
    
    
     
  
  
Dies ist die aktuelle Version des Eintrags.
Weitere URLs
Abstract
We propose a deep neural network architecture and a training algorithm for computing approximate Lyapunov functions of systems of nonlinear ordinary differential equations. Under the assumption that the system admits a compositional Lyapunov function, we prove that the number of neurons needed for an approximation of a Lyapunov function with fixed accuracy grows only polynomially in the state dimension, i.e., the proposed approach is able to overcome the curse of dimensionality. We show that nonlinear systems satisfying a small-gain condition admit compositional Lyapunov functions. Numerical examples in up to ten space dimensions illustrate the performance of the training scheme.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
- 
Computing Lyapunov functions using deep neural networks. (deposited 20 Mai 2020 08:51)
- Computing Lyapunov functions using deep neural networks. (deposited 07 Jan 2021 13:50) [Aktuelle Anzeige]
 
 
        
 bei Google Scholar
 bei Google Scholar