Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Three Kinds of Butterfly Effects within Lorenz Models

Title data

Shen, Bo-Wen ; Pielke, Roger A., Sr. ; Zeng, Xubin ; Cui, Jialin ; Faghih-Naini, Sara ; Paxson, Wei ; Atlas, Robert:
Three Kinds of Butterfly Effects within Lorenz Models.
In: Encyclopedia. Vol. 2 (2022) Issue 3 . - pp. 1250-1259.
ISSN 2673-8392
DOI: https://doi.org/10.3390/encyclopedia2030084

Abstract in another language

Within Lorenz models, the three major kinds of butterfly effects (BEs) are the sensitive dependence on initial conditions (SDIC), the ability of a tiny perturbation to create an organized circulation at large distances, and the hypothetical role of small-scale processes in contributing to finite predictability, referred to as the first, second, and third kinds of butterfly effects (BE1, BE2, and BE3), respectively. A well-accepted definition of the butterfly effect is the BE1 with SDIC, which was rediscovered by Lorenz in 1963. In fact, the use of the term “butterfly” appeared in a conference presentation by Lorenz in 1972, when Lorenz introduced the BE2 as the metaphorical butterfly effect. In 2014, the so-called “real butterfly effect”, which is based on the features of Lorenz’s study in 1969, was introduced as the BE3.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Scientific Computing
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Professor Numerics of Partial Differential Equations
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Professor Numerics of Partial Differential Equations > Professor Numerics of Partial Differential Equations - Univ.-Prof. Dr. Vadym Aizinger
Research Institutions > Research Centres > Forschungszentrum für Modellbildung und Simulation (MODUS)
Research Institutions > Research Centres > Forschungszentrum für Wissenschaftliches Rechnen an der Universität Bayreuth - HPC-Forschungszentrum
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: No
DDC Subjects: 000 Computer Science, information, general works
000 Computer Science, information, general works > 004 Computer science
500 Science
500 Science > 510 Mathematics
500 Science > 550 Earth sciences, geology
600 Technology, medicine, applied sciences
600 Technology, medicine, applied sciences > 600 Technology
Date Deposited: 14 Oct 2022 05:25
Last Modified: 14 Oct 2022 05:25
URI: https://eref.uni-bayreuth.de/id/eprint/72432