Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

The Dual Nature of Chaos and Order in the Atmosphere

Titelangaben

Shen, Bo-Wen ; Pielke Sr., Roger ; Zeng, Xubin ; Cui, Jialin ; Faghih-Naini, Sara ; Paxson, Wei ; Kesarkar, Amit ; Zeng, Xiping ; Atlas, Robert:
The Dual Nature of Chaos and Order in the Atmosphere.
In: Atmosphere. Bd. 13 (2022) Heft 11 . - 1892.
ISSN 2073-4433
DOI: https://doi.org/10.3390/atmos13111892

Abstract

In the past, the Lorenz 1963 and 1969 models have been applied for revealing the chaotic nature of weather and climate and for estimating the atmospheric predictability limit. Recently, an in-depth analysis of classical Lorenz 1963 models and newly developed, generalized Lorenz models suggested a revised view that “the entirety of weather possesses a dual nature of chaos and order with distinct predictability”, in contrast to the conventional view of “weather is chaotic”. The distinct predictability associated with attractor coexistence suggests limited predictability for chaotic solutions and unlimited predictability (or up to their lifetime) for non-chaotic solutions. Such a view is also supported by a recent analysis of the Lorenz 1969 model that is capable of producing both unstable and stable solutions. While the alternative appearance of two kinds of attractor coexistence was previously illustrated, in this study, multistability (for attractor coexistence) and monostability (for single type solutions) are further discussed using kayaking and skiing as an analogy. Using a slowly varying, periodic heating parameter, we additionally emphasize the predictable nature of recurrence for slowly varying solutions and a less predictable (or unpredictable) nature for the onset for emerging solutions (defined as the exact timing for the transition from a chaotic solution to a non-chaotic limit cycle type solution). As a result, we refined the revised view outlined above to: “The atmosphere possesses chaos and order; it includes, as examples, emerging organized systems (such as tornadoes) and time varying forcing from recurrent seasons”. In addition to diurnal and annual cycles, examples of non-chaotic weather systems, as previously documented, are provided to support the revised view.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: dual nature; chaos; generalized Lorenz model; predictability; multistability
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Professur Numerik partieller Differentialgleichungen
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Professur Numerik partieller Differentialgleichungen > Professur Numerik partieller Differentialgleichungen - Univ.-Prof. Dr. Vadym Aizinger
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Modellierung und Simulation (MODUS)
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Forschungszentrum für Wissenschaftliches Rechnen an der Universität Bayreuth - HPC-Forschungszentrum
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke
000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 510 Mathematik
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Eingestellt am: 15 Nov 2022 06:56
Letzte Änderung: 27 Sep 2023 11:22
URI: https://eref.uni-bayreuth.de/id/eprint/72773