Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Temperature-dependent dielectric anomalies in powder aerosol deposited ferroelectric ceramic films

Title data

Eckstein, Udo ; Exner, Jörg ; Bencan Golob, Andreja ; Ziberna, Katarina ; Drazic, Goran ; Ursic, Hana ; Wittkämper, Haiko ; Papp, Christian ; Kita, Jaroslaw ; Moos, Ralf ; Webber, Kyle G. ; Khansur, Neamul H.:
Temperature-dependent dielectric anomalies in powder aerosol deposited ferroelectric ceramic films.
In: Journal of Materiomics. Vol. 8 (2022) Issue 6 . - pp. 1239-1250.
ISSN 2352-8478
DOI: https://doi.org/10.1016/j.jmat.2022.05.001

Official URL: Volltext

Abstract in another language

Room-temperature fabrication of functional ceramic films using powder aerosol deposition (AD) is important for practical applications. However, the as-processed ferroelectric films show unusual temperature-dependent dielectric response, including enhanced conductivity in the as-processed state and subsequent significant increase in the permittivity following heat treatment. In this work, we investigate the influence of the residual internal stresses developed during the high-impact consolidation process on the dielectric response. Moreover, the recombination of charged defects generated during deposition is driven by the temperature and the atmospheric condition during the heat treatment as well as the carrier gas type used during deposition. Thermal treatment up to 500 °C in different atmospheres was used to tune the dielectric and ferroelectric response, highlighting that irrespective of the type of carrier gas, AD deposition process induces charged defects in polar oxide ceramics that can be reduced through heat-treatment far-below their bulk sintering temperature. Macroscopic electromechanical properties are contrasted to in-situ heating scanning transmission electron microscopy to observe possible local effects, such as crystallization, grain growth, crystal defect structure, or grain reorientation. In addition X-ray diffraction and X-ray photoelectron spectroscopy studies were conducted to gain insight into the effect of annealing on the crystal structure and local moisture adsorption.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos
Profile Fields > Advanced Fields > Advanced Materials
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 16 Nov 2022 11:23
Last Modified: 16 Nov 2022 11:23
URI: https://eref.uni-bayreuth.de/id/eprint/72785