Titelangaben
Shetty, Pranav ; Rajan, Arunkumar Chitteth ; Künneth, Christopher ; Gupta, Sonakshi ; Panchumarti, Lakshmi Prerana ; Holm, Lauren ; Zhang, Chao ; Ramprasad, Rampi:
A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing.
In: npj Computational Materials.
Bd. 9
(2023)
Heft 1
.
- 52.
ISSN 2057-3960
DOI: https://doi.org/10.1038/s41524-023-01003-w
Abstract
The ever-increasing number of materials science articles makes it hard to infer chemistry-structure-property relations from literature. We used natural language processing methods to automatically extract material property data from the abstracts of polymer literature. As a component of our pipeline, we trained MaterialsBERT, a language model, using 2.4 million materials science abstracts, which outperforms other baseline models in three out of five named entity recognition datasets. Using this pipeline, we obtained ~300,000 material property records from ~130,000 abstracts in 60 hours. The extracted data was analyzed for a diverse range of applications such as fuel cells, supercapacitors, and polymer solar cells to recover non-trivial insights. The data extracted through our pipeline is made available at polymerscholar.org which can be used to locate material property data recorded in abstracts. This work demonstrates the feasibility of an automatic pipeline that starts from published literature and ends with extracted material property information.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science > Juniorprofessur Computational Materials Science - Juniorprof. Dr. Christopher Künneth Fakultäten Fakultäten > Fakultät für Ingenieurwissenschaften Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften |
Eingestellt am: | 05 Mai 2023 08:46 |
Letzte Änderung: | 05 Mai 2023 08:46 |
URI: | https://eref.uni-bayreuth.de/id/eprint/76172 |