Titelangaben
Gurnani, Rishi ; Künneth, Christopher ; Toland, Aubrey ; Ramprasad, Rampi:
Polymer Informatics at Scale with Multitask Graph Neural Networks.
In: Chemistry of Materials.
Bd. 35
(2023)
Heft 4
.
- S. 1560-1567.
ISSN 1520-5002
DOI: https://doi.org/10.1021/acs.chemmater.2c02991
Abstract
Artificial intelligence-based methods are becoming increasingly effective at screening libraries of polymers down to a selection that is manageable for experimental inquiry. The vast majority of presently adopted approaches for polymer screening rely on handcrafted chemostructural features extracted from polymer repeat units─a burdensome task as polymer libraries, which approximate the polymer chemical search space, progressively grow over time. Here, we demonstrate that directly “machine learning” important features from a polymer repeat unit is a cheap and viable alternative to extracting expensive features by hand. Our approach─based on graph neural networks, multitask learning, and other advanced deep learning techniques─speeds up feature extraction by 1–2 orders of magnitude relative to presently adopted handcrafted methods without compromising model accuracy for a variety of polymer property prediction tasks. We anticipate that our approach, which unlocks the screening of truly massive polymer libraries at scale, will enable more sophisticated and large scale screening technologies in the field of polymer informatics.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science > Juniorprofessur Computational Materials Science - Juniorprof. Dr. Christopher Künneth Fakultäten Fakultäten > Fakultät für Ingenieurwissenschaften Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften |
Eingestellt am: | 05 Mai 2023 08:43 |
Letzte Änderung: | 05 Mai 2023 08:43 |
URI: | https://eref.uni-bayreuth.de/id/eprint/76178 |