Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Enhanced vascularization and de novo tissue formation in hydrogels made of engineered RGD-tagged spider silk proteins in the arteriovenous loop model

Titelangaben

Steiner, Dominik ; Winkler, Sophie ; Heltmann-Meyer, Stefanie ; Trossmann, Vanessa T. ; Fey, Tobias ; Scheibel, Thomas ; Horch, Raymund E. ; Arkudas, Andreas:
Enhanced vascularization and de novo tissue formation in hydrogels made of engineered RGD-tagged spider silk proteins in the arteriovenous loop model.
In: Biofabrication. Bd. 13 (2021) Heft 4 . - 045003.
ISSN 1758-5090
DOI: https://doi.org/10.1088/1758-5090/ac0d9b

Abstract

Due to its low immunogenic potential and the possibility to fine-tune their properties, materials made of recombinant engineered spider silks are promising candidates for tissue engineering applications. However, vascularization of silk-based scaffolds is one critical step for the generation of bioartificial tissues and consequently for clinical application. To circumvent insufficient vascularization, the surgically induced angiogenesis by means of arteriovenous loops (AVL) represents a highly effective methodology. Here, previously established hydrogels consisting of nano-fibrillary recombinant eADF4(C16) were transferred into Teflon isolation chambers and vascularized in the rat AVL model over 4 weeks. To improve vascularization, also RGD-tagged eADF4(C16) hydrogels were implanted in the AVL model over 2 and 4 weeks. Thereafter, the specimen were explanted and analyzed using histology and microcomputed tomography. We were able to confirm biocompatibility and tissue formation over time. Functionalizing eADF4(C16) with RGD-motifs improved hydrogel stability and enhanced vascularization even outperforming other hydrogels, such as fibrin. This study demonstrates that the scaffold ultrastructure as well as biofunctionalization with RGD-motifs are powerful tools to optimize silk-based biomaterials for tissue engineering applications.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Profilfelder > Advanced Fields > Neue Materialien
Profilfelder > Advanced Fields > Molekulare Biowissenschaften
Profilfelder > Emerging Fields
Profilfelder > Emerging Fields > Lebensmittel- und Gesundheitswissenschaften
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Materialzentrum - BayMAT
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 16 Okt 2023 10:44
Letzte Änderung: 16 Okt 2023 10:44
URI: https://eref.uni-bayreuth.de/id/eprint/87181