Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil

Title data

Kühnlenz, Tanja ; Schmidt, Holger ; Uraguchi, Shimpei ; Clemens, Stephan:
Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil.
In: Journal of Experimental Botany. Vol. 65 (2014) Issue 15 . - pp. 4241-4253.
ISSN 1460-2431
DOI: https://doi.org/10.1093/jxb/eru195

Official URL: Volltext

Project information

Project financing: Deutsche Forschungsgemeinschaft
Japanese Society for the Promotion of Science

Abstract in another language

Phytochelatins play a key role in the detoxification of metals in plants and many other eukaryotes. Their formation is catalysed by phytochelatin synthases (PCS) in the presence of metal excess. It appears to be common among higher plants to possess two PCS genes, even though in Arabidopsis thaliana only AtPCS1 has been demonstrated to confer metal tolerance. Employing a highly sensitive quantification method based on ultraperformance electrospray ionization quadrupole time-of-flight mass spectrometry, we detected AtPCS2-dependent phytochelatin formation. Overexpression of AtPCS2 resulted in constitutive phytochelatin accumulation, i.e. in the absence of metal excess, both in planta and in a heterologous system. This indicates distinct enzymatic differences between AtPCS1 and AtPCS2. Furthermore, AtPCS2 was able to partially rescue the Cd hypersensitivity of the AtPCS1-deficient cad1-3 mutant in a liquid seedling assay, and, more importantly, when plants were grown on soil spiked with Cd to a level that is close to what can be found in agricultural soils. No rescue was found in vertical-plate assays, the most commonly used method to assess metal tolerance. Constitutive AtPCS2-dependent phytochelatin synthesis suggests a physiological role of AtPCS2 other than metal detoxification. The differences observed between wild-type plants and cad1-3 on Cd soil demonstrated: (i) the essentiality of phytochelatin synthesis for tolerating levels of Cd contamination that can naturally be encountered by plants outside of metal-rich habitats, and (ii) a contribution to Cd accumulation under these conditions.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER122216
Keywords: Arabidopsis; metal tolerance; Cd tolerance; Cd contamination; PCS overexpression; phytochelatins; LC-MS
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Physiology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Physiology > Chair Plant Physiology - Univ.-Prof. Dr. Stephan Clemens
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Ecology and the Environmental Sciences
Profile Fields > Advanced Fields > Molecular Biosciences
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
500 Science > 570 Life sciences, biology
500 Science > 580 Plants (Botany)
Date Deposited: 30 Mar 2015 06:16
Last Modified: 30 Apr 2015 08:58
URI: https://eref.uni-bayreuth.de/id/eprint/9428