Titelangaben
Grüne, Lars ; Pioch, Kilian ; Kriecherbauer, Thomas ; Margaliot, Michael:
Random attraction in TASEP with time-varying hopping rates.
In: SIAM Journal on Applied Dynamical Systems.
Bd. 25
(2026)
Heft 1
.
- S. 260-278.
ISSN 1536-0040
DOI: https://doi.org/10.1137/25M1729770
Dies ist die aktuelle Version des Eintrags.
Weitere URLs
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Analyse zufälliger Transportvorgänge in Ketten mittels moderner Methoden aus System- und Kontrolltheorie 470999742 |
|---|---|
| Projektfinanzierung: |
Deutsche Forschungsgemeinschaft Israel Science Foundation |
Abstract
The totally asymmetric simple exclusion principle (TASEP) is a fundamental model in nonequilibrium statistical mechanics. It describes the stochastic unidirectional movement of particles along a 1D chain of ordered sites. We consider the continuous-time version of TASEP with a finite number of sites and with time-varying hopping rates between the sites. We show how to formulate this model as a nonautonomous random dynamical system (NRDS) with a finite state-space. We provide conditions guaranteeing that random pullback and forward attractors of such an NRDS exist and consist of singletons. In the context of the nonautonomous TASEP these conditions imply almost sure synchronization of the individual random paths. This implies in particular that perturbations that change the state of the particles along the chain are "filtered out" in the long run. We demonstrate that the required conditions are tight by providing examples where these conditions do not hold and consequently the forward attractor does not exist or the pullback attractor is not a singleton. The results in this paper generalize our earlier results for autonomous TASEP in https://doi.org/10.1137/20M131446X and contain these as a special case.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
Random attraction in TASEP with time-varying hopping rates. (deposited 30 Jan 2025 07:29)
- Random attraction in TASEP with time-varying hopping rates. (deposited 08 Jan 2026 11:35) [Aktuelle Anzeige]

bei Google Scholar