Title data
Glosse, Philipp ; Denneler, Stefan ; Kauffmann-Weiss, Sandra ; Oomen, Marijn ; Moos, Ralf:
MgB₂ superconducting films prepared by the aerosol deposition method.
2016
Event: 6th International Congress on Ceramics (ICC6)
, 21.-25.08.2016
, Dresden, Deutschland.
(Conference item: Conference
,
Speech
)
Project information
Project title: |
Project's official title Project's id DIAMANT 03SF0480 |
---|---|
Project financing: |
Bundesministerium für Bildung und Forschung |
Abstract in another language
Magnesium diboride (MgB2) is a promising superconductor with working temperatures below 39 K. Several techniques are known to prepare MgB2 films, filaments or wires. The powder-in-tube technique is used commercially to produce multifilament conductors from in situ or ex situ prepared MgB2 powders. Physical vapor deposition is appropriate to coat substrates with MgB2 thin film. The Aerosol Deposition Method (ADM) is a spray-coating technique at room temperature used to produce films of brittle materials, mostly ceramics like Al2O3. Due to its ceramic-like mechanical properties, MgB2 can be deposited with this technique as well. For the ADM, fine powders with a particle size range between 0.1 to 10 μm are used as starting powders. A defined aerosol of these powders and a carrier gas is accelerated into a vacuum chamber. As soon as the particles collide with the substrate, they crack and a fine-grained film forms. Thus ADM thick films are mostly dense nanocrystalline coatings, where various materials can work as a substrate. In this study MgB2 films are formed by the ADM on substrates like glass, Al2O3, and nickel base alloys. Processing parameters and powder treatment strongly affect film thicknesses and the morphology of the as-deposited films. The film thickness of the first samples was about 5 μm. The influence of aerosol parameters like carrier gas type, gas flow and aerosol concentration is evaluated based on the quality of the deposited MgB2.
Further data
Item Type: | Conference item (Speech) |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Engineering Science Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos Profile Fields > Advanced Fields > Advanced Materials Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT Research Institutions > Research Units > ZET - Zentrum für Energietechnik Faculties Faculties > Faculty of Engineering Science > Chair Functional Materials Profile Fields Profile Fields > Advanced Fields Research Institutions Research Institutions > Research Centres Research Institutions > Research Units |
Result of work at the UBT: | Yes |
DDC Subjects: | 600 Technology, medicine, applied sciences > 620 Engineering |
Date Deposited: | 05 Sep 2016 07:47 |
Last Modified: | 05 Sep 2016 08:43 |
URI: | https://eref.uni-bayreuth.de/id/eprint/34615 |