Titelangaben
Riedl, Wolfgang ; Baier, Robert ; Gerdts, Matthias:
Optimization-based subdivision algorithm for reachable sets.
Mathematisches Institut, Universität Bayreuth; Institut für Mathematik und Rechneranwendung, Universität der Bundeswehr in Neubiberg/München
Bayreuth
,
2016
. - 33 S.
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID European Union's Seventh Framework Programme 338508 |
---|---|
Projektfinanzierung: |
Andere |
Abstract
Reachable sets for nonlinear control systems can be computed via the use of solvers for optimal control problems. The paper presents a new improved variant which applies adaptive concepts similar to the framework of known subdivision techniques by Dellnitz/Hohmann. Using set properties of the nearest point projection, the convergence and rigorousness of the algorithm can be proved without the assumption of diffeomorphism on a nonlinear mapping. The adaptive method is demonstrated by two nonlinear academic examples and for a more complex robot model with box constraints for four states, two controls and five boundary conditions. In these examples adaptive and non-adaptive techniques as well as various discretization methods and optimization solvers are compared. The method also offers interesting features, like zooming into details of the reachable set, self-determination of the needed bounding box, easy parallelization and the use of different grid geometries. With the calculation of a 3d funnel in one of the examples, it is shown that the algorithm can also be used to approximate higher dimensional reachable sets and the resulting box collection may serve as a starting point for more sophisticated visualizations or algorithms.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Zusätzliche Informationen: | Contents:
1. Introduction and preliminaries 2. Grid construction via subdivision 3. Implementation 4. Numerical examples 5. Advantages of the algorithm 5.1 Transformed grids 5.2 Zooming 5.3 Determination of a bounding box 5.4 Parallelization 5.5 Solution funnel in 3d 6. Conclusions |
Keywords: | reachable sets; subdivision; optimal control; direct discretization; nonlinear systems; nonlinear optimization |
Fachklassifikationen: | Mathematics Subject Classification Code: 93B03 49M37 (49M25 49J53 93C10) |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen > Lehrstuhl Wissenschaftliches Rechnen - Univ.-Prof. Dr. Mario Bebendorf Profilfelder Profilfelder > Advanced Fields Profilfelder > Advanced Fields > Nichtlineare Dynamik |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Eingestellt am: | 04 Feb 2017 22:00 |
Letzte Änderung: | 14 Sep 2020 12:11 |
URI: | https://eref.uni-bayreuth.de/id/eprint/35948 |
Zu diesem Eintrag verfügbare Versionen
- Optimization-based subdivision algorithm for reachable sets. (deposited 04 Feb 2017 22:00) [Aktuelle Anzeige]