Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Engineering the enolase magnesium II binding site: implications for its evolution

Titelangaben

Schreier, Bettina ; Höcker, Birte:
Engineering the enolase magnesium II binding site: implications for its evolution.
In: Biochemistry. Bd. 49 (2010) Heft 35 . - S. 7582-7589.
ISSN 1520-4995
DOI: https://doi.org/10.1021/bi100954f

Abstract

The glycolytic enzyme enolase catalyzes the reversible elimination of water from 2-phosphoglycerate (2-PGA) to form phosphoenolpyruvate (PEP). Two magnesium ions in the active site are thought to facilitate the reaction by activation of the C2 proton of 2-PGA and charge stabilization of the intermediate. The initial abstraction of a proton from a carboxylic acid is common to all members of the enolase superfamily, yet in all other known members of this superfamily, only one magnesium ion (MgI) per active site is sufficient to promote catalysis. We wanted to further investigate the importance of the second magnesium ion (MgII) for the catalytic mechanism of yeast enolase 1. Toward this end, we removed all MgII coordinating residues and replaced substrate-MgII interactions by introducing positively charged side chains. High-resolution crystal structures and activity assays show that the introduced positively charged side chains effectively prohibit MgII binding but fail to promote catalysis. We conclude that enolase is inactive without MgII, yet control mutants without additional positively charged side chains retain basal enolase activity through binding of magnesium to 2-PGA in an open active site without the help of MgII coordinating residues. Thus, we believe that ancestral enolase activity might have evolved in a member of the enolase superfamily that provides only the necessary catalytic residues and the binding site for MgI. Additionally, precatalytic binding of 2-PGA to the apo state of enolase was observed.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Biochemie > Lehrstuhl Biochemie III - Proteindesign - Univ.-Prof. Dr. Birte Höcker
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Biochemie
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 01 Jun 2017 07:03
Letzte Änderung: 20 Apr 2022 12:45
URI: https://eref.uni-bayreuth.de/id/eprint/37220