Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Dimerization of the Conserved N‑Terminal Domain of a Spider Silk Protein Controls the Self-Assembly of the Repetitive Core Domain

Title data

Bauer, Joschka ; Scheibel, Thomas:
Dimerization of the Conserved N‑Terminal Domain of a Spider Silk Protein Controls the Self-Assembly of the Repetitive Core Domain.
In: Biomacromolecules. Vol. 18 (2017) Issue 8 . - pp. 2521-2528.
ISSN 1526-4602
DOI: https://doi.org/10.1021/acs.biomac.7b00672

Abstract in another language

Spider silk proteins comprise a repetitive core domain with polyalanine and glycine/proline-rich stretches flanked by highly conserved nonrepetitive N- and C-terminal domains. The termini are responsive to assembly triggers, sensing changes in the ionic (H+, phosphate) and mechanical (shear stress) environment along the spinning duct. The N-terminal domain dimerizes in a pH-dependent manner induced by protonation of conserved acidic residues. To date, dimerization of N-terminal spider silk domains has been individually investigated in the absence of large core domains. In this work, the impact of an engineered 50 kDa (AQ) core domain was studied on N-terminal dimerization by circular dichroism, fluorescence and absorbance spectroscopy, multiangle light scattering, as well as scanning electron and transmission electron microscopy. Although the core domain showed no apparent influence on the dimerization behavior of the N-terminal domain, the N-terminal domain in contrast influenced the behavior of the core domain: the monomeric state enhanced (AQ)’s solubility, and dimer formation triggered self-assembly. The monomer–dimer equilibrium was influenced by using several previously established mutants, confirming these results. This work thereby provides molecular insights into how key residues of the N-terminal domain control the dimerization-mediated transformation of soluble spidroins into fibrillary assemblies.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Biomaterials
Faculties > Faculty of Engineering Science > Chair Biomaterials > Chair Biomaterials - Univ.-Prof. Dr. Thomas Scheibel
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Polymer and Colloid Science
Profile Fields > Advanced Fields > Advanced Materials
Profile Fields > Advanced Fields > Molecular Biosciences
Profile Fields > Emerging Fields
Profile Fields > Emerging Fields > Food and Health Sciences
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences
600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 03 Aug 2017 06:45
Last Modified: 22 Apr 2022 10:45
URI: https://eref.uni-bayreuth.de/id/eprint/39029