Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

The MyoRobot : A novel automated biomechatronics System to assess voltage/Ca²⁺ biosensors and active/passive biomechanics in muscle and biomaterials

Title data

Haug, M. ; Reischl, B. ; Prölß, G. ; Pollmann, C. ; Buckert, T. ; Keidel, C. ; Schürmann, S. ; Hock, M. ; Rupitsch, S. ; Heckel, Michael ; Pöschel, Thorsten ; Scheibel, Thomas ; Haynl, Christian ; Kiriaev, L. ; Head, Sl ; Friedrich, Oliver:
The MyoRobot : A novel automated biomechatronics System to assess voltage/Ca²⁺ biosensors and active/passive biomechanics in muscle and biomaterials.
In: Biosensors and Bioelectronics. Vol. 102 (2018) . - pp. 589-599.
ISSN 1873-4235
DOI: https://doi.org/10.1016/j.bios.2017.12.003

Abstract in another language

We engineered an automated biomechatronics system, MyoRobot, for robust objective and versatile assessment of muscle or polymer materials (bio-)mechanics. It covers multiple levels of muscle biosensor assessment, e.g. membrane voltage or contractile apparatus Ca2+ ion responses (force resolution 1 μN, 0–10 mN for the given sensor; [Ca2+] range ~ 100 nM–25 μM). It replaces previously tedious manual protocols to obtain exhaustive information on active/passive biomechanical properties across various morphological tissue levels. Deciphering mechanisms of muscle weakness requires sophisticated force protocols, dissecting contributions from altered Ca2+ homeostasis, electro-chemical, chemico-mechanical biosensors or visco-elastic components. From whole organ to single fibre levels, experimental demands and hardware requirements increase, limiting biomechanics research potential, as reflected by only few commercial biomechatronics systems that can address resolution, experimental versatility and mostly, automation of force recordings. Our MyoRobot combines optical force transducer technology with high precision 3D actuation (e.g. voice coil, 1 μm encoder resolution; stepper motors, 4 μm feed motion), and customized control software, enabling modular experimentation packages and automated data pre-analysis. In small bundles and single muscle fibres, we demonstrate automated recordings of (i) caffeine-induced-, (ii) electrical field stimulation (EFS)-induced force, (iii) pCa-force, (iv) slack-tests and (v) passive length-tension curves. The system easily reproduces results from manual systems (two times larger stiffness in slow over fast muscle) and provides novel insights into unloaded shortening velocities (declining with increasing slack lengths). The MyoRobot enables automated complex biomechanics assessment in muscle research.
Applications also extend to material sciences, exemplarily shown here for spider silk and collagen biopolymers.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: Skeletal muscle; Biopolymers; Biosensor; Biomechatronics; Ca2+ sensitivity; Elasticity
Institutions of the University: Faculties
Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Biomaterials
Faculties > Faculty of Engineering Science > Chair Biomaterials > Chair Biomaterials - Univ.-Prof. Dr. Thomas Scheibel
Profile Fields
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Polymer and Colloid Science
Profile Fields > Advanced Fields > Advanced Materials
Profile Fields > Advanced Fields > Molecular Biosciences
Profile Fields > Emerging Fields
Profile Fields > Emerging Fields > Food and Health Sciences
Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences
600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 05 Jan 2018 07:35
Last Modified: 25 Apr 2022 13:43
URI: https://eref.uni-bayreuth.de/id/eprint/41544