Title data
Schubert, Michael ; Leupold, Nico ; Exner, Jörg ; Kita, Jaroslaw ; Moos, Ralf:
High-Temperature Electrical Insulation Behavior of Alumina Films Prepared at Room Temperature by Aerosol Deposition and Influence of Annealing Process and Powder Impurities.
In: Journal of Thermal Spray Technology.
Vol. 27
(2018)
Issue 5
.
- pp. 870-879.
ISSN 1544-1016
DOI: https://doi.org/10.1007/s11666-018-0719-x
Project information
Project title: |
Project's official title Project's id No information AZ-1055-12 |
---|---|
Project financing: |
Bayerische Forschungsstiftung |
Abstract in another language
Alumina (Al2O3) is a widely used material for highly insulating films due to its very low electrical conductivity, even at high temperatures. Typically, alumina films have to be sintered far above 1200 °C, which precludes the coating of lower melting substrates. The aerosol deposition method (ADM), however, is a promising method to manufacture ceramic films at room temperature directly from the ceramic raw powder. In this work, alumina films were deposited by ADM on a three-electrode setup with guard ring and the electrical conductivity was measured between 400 and 900 °C by direct current measurements according to ASTM D257 or IEC 60093. The effects of film annealing and of zirconia impurities in the powder on the electrical conductivity were investigated. The conductivity values of the ADM films correlate well with literature data and can even be improved by annealing at 900 °C from 4.5 × 10−12 S/cm before annealing up to 5.6 × 10−13 S/cm after annealing (measured at 400 °C). The influence of zirconia impurities is very low as the conductivity is only slightly elevated. The ADM-processed films show a very good insulation behavior represented by an even lower electrical conductivity than conventional alumina substrates as they are commercially available for thick-film technology.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Engineering Science Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos Profile Fields > Advanced Fields > Advanced Materials Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT Faculties Faculties > Faculty of Engineering Science > Chair Functional Materials Profile Fields Profile Fields > Advanced Fields Research Institutions Research Institutions > Research Centres |
Result of work at the UBT: | Yes |
DDC Subjects: | 600 Technology, medicine, applied sciences > 620 Engineering |
Date Deposited: | 28 Jun 2018 06:26 |
Last Modified: | 28 Jun 2018 06:26 |
URI: | https://eref.uni-bayreuth.de/id/eprint/44727 |