Title data
Achmann, Sabine ; Hagen, Gunter ; Hämmerle, Martin ; Malkowsky, Itamar Michael ; Kiener, Christoph ; Moos, Ralf:
Sulfur Removal from Low-Sulfur Gasoline and Diesel Fuel by Metal-Organic Frameworks.
In: Chemical Engineering & Technology.
Vol. 33
(2010)
Issue 2
.
- pp. 275-280.
ISSN 1521-4125
DOI: https://doi.org/10.1002/ceat.200900426
Abstract in another language
Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Institutions of the University: | Faculties > Faculty of Engineering Science Faculties > Faculty of Engineering Science > Chair Functional Materials Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos Research Institutions > Research Units > BERC - Bayreuth Engine Research Center Faculties Research Institutions Research Institutions > Research Units Profile Fields > Advanced Fields > Advanced Materials Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT Profile Fields Profile Fields > Advanced Fields Research Institutions > Research Centres |
Result of work at the UBT: | Yes |
DDC Subjects: | 600 Technology, medicine, applied sciences > 620 Engineering |
Date Deposited: | 26 Jan 2015 08:33 |
Last Modified: | 11 Apr 2018 12:56 |
URI: | https://eref.uni-bayreuth.de/id/eprint/5664 |