Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Synthetic biology approaches to dissecting linear motor protein function : towards the design and synthesis of artificial autonomous protein walkers

Titelangaben

Linke, Heiner ; Höcker, Birte ; Furuta, Ken'ya ; Forde, Nancy R. ; Curmi, Paul M. G.:
Synthetic biology approaches to dissecting linear motor protein function : towards the design and synthesis of artificial autonomous protein walkers.
In: Biophysical Reviews. Bd. 12 (2020) Heft 4 . - S. 1041-1054.
ISSN 1867-2469
DOI: https://doi.org/10.1007/s12551-020-00717-1

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
ERC Consolidator Grant "Protein Lego"
647548

Abstract

Molecular motors and machines are essential for all cellular processes that together enable life. Built from proteins with a wide range of properties, functionalities and performance characteristics, biological motors perform complex tasks and can transduce chemical energy into mechanical work more efficiently than human-made combustion engines. Sophisticated studies of biological protein motors have provided many structural and biophysical insights and enabled the development of models for motor function. However, from the study of highly evolved, biological motors, it remains difficult to discern detailed mechanisms, for example, about the relative role of different force generation mechanisms, or how information is communicated across a protein to achieve the necessary coordination. A promising, complementary approach to answering these questions is to build synthetic protein motors from the bottom up. Indeed, much effort has been invested in functional protein design, but so far, the "holy grail" of designing and building a functional synthetic protein motor has not been realized. Here, we review the progress made to date, and we put forward a roadmap for achieving the aim of constructing the first artificial, autonomously running protein motor. Specifically, we propose to break down the task into (i) enzymatic control of track binding, (ii) the engineering of asymmetry and (iii) the engineering of allosteric control for internal communication. We also propose specific approaches for solving each of these challenges.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Allostery; Energy transduction; Motor protein; Processivity; Synthetic biology; Thermal fluctuations;
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Biochemie > Lehrstuhl Biochemie III - Proteindesign - Univ.-Prof. Dr. Birte Höcker
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Biochemie
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 540 Chemie
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
Eingestellt am: 26 Jan 2021 07:41
Letzte Änderung: 25 Apr 2022 13:24
URI: https://eref.uni-bayreuth.de/id/eprint/62394