Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template

Titelangaben

Meier, Monika M. ; Rajendran, Chitra ; Malisi, Christoph ; Fox, Nicholas G. ; Xu, Chengfu ; Schlee, Sandra ; Barondeau, David P. ; Höcker, Birte ; Sterner, Reinhard ; Raushel, Frank M.:
Molecular engineering of organophosphate hydrolysis activity from a weak promiscuous lactonase template.
In: Journal of the American Chemical Society. Bd. 135 (2013) Heft 31 . - S. 11670-11677.
ISSN 1520-5126
DOI: https://doi.org/10.1021/ja405911h

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
NIH Grant
GM 68550

Projektfinanzierung: National Institutes of Health

Abstract

Rapid evolution of enzymes provides unique molecular insights into the remarkable adaptability of proteins and helps to elucidate the relationship between amino acid sequence, structure, and function. We interrogated the evolution of the phosphotriesterase from Pseudomonas diminuta (PdPTE), which hydrolyzes synthetic organophosphates with remarkable catalytic efficiency. PTE is thought to be an evolutionarily "young" enzyme, and it has been postulated that it has evolved from members of the phosphotriesterase-like lactonase (PLL) family that show promiscuous organophosphate-degrading activity. Starting from a weakly promiscuous PLL scaffold (Dr0930 from Deinococcus radiodurans ), we designed an extremely efficient organophosphate hydrolase (OPH) with broad substrate specificity using rational and random mutagenesis in combination with in vitro activity screening. The OPH activity for seven organophosphate substrates was simultaneously enhanced by up to 5 orders of magnitude, achieving absolute values of catalytic efficiencies up to 10(6) M(-1) s(-1). Structural and computational analyses identified the molecular basis for the enhanced OPH activity of the engineered PLL variants and demonstrated that OPH catalysis in PdPTE and the engineered PLL differ significantly in the mode of substrate binding.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Biochemie > Lehrstuhl Biochemie III - Proteindesign - Univ.-Prof. Dr. Birte Höcker
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Biochemie
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 540 Chemie
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
Eingestellt am: 27 Jan 2021 07:22
Letzte Änderung: 15 Jul 2022 10:55
URI: https://eref.uni-bayreuth.de/id/eprint/62432