Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Machine learning predictive model for severe COVID-19

Titelangaben

Kang, Jianhong ; Chen, Ting ; Luo, Honghe ; Luo, Yifeng ; Du, Guipeng ; Yang, Mia Jiming:
Machine learning predictive model for severe COVID-19.
In: Infection, Genetics and Evolution. Bd. 90 (2021) . - 104737.
ISSN 1567-1348
DOI: https://doi.org/10.1016/j.meegid.2021.104737

Angaben zu Projekten

Projektfinanzierung: Andere

Abstract

To develop a modified predictive model for severe COVID-19 in people infected with Sars-Cov-2. We developed the predictive model for severe patients of COVID-19 based on the clinical date from the Tumor Center of Union Hospital affiliated with Tongji Medical College, China. A total of 151 cases from Jan. 26 to Mar. 20, 2020, were included. Then we followed 5 steps to predict and evaluate the model: data preprocessing, data splitting, feature selection, model building, prevention of overfitting, and Evaluation, and combined with artificial neural network algorithms. We processed the results in the 5 steps. In feature selection, ALB showed a strong negative correlation (r = 0.771, P < 0.001) whereas GLB (r = 0.661, P < 0.001) and BUN (r = 0.714, P < 0.001) showed a strong positive correlation with severity of COVID-19. TensorFlow was subsequently applied to develop a neural network model. The model achieved good prediction performance, with an area under the curve value of 0.953(0.889–0.982). Our results showed its outstanding performance in prediction. GLB and BUN may be two risk factors for severe COVID-19. Our findings could be of great benefit in the future treatment of patients with COVID-19 and will help to improve the quality of care in the long term. This model has great significance to rationalize early clinical interventions and improve the cure rate.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Severe COVID-19; Machine learning; Predictive model
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Lehrstuhl Medizinmanagement und Gesundheitswissenschaften
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Lehrstuhl Medizinmanagement und Gesundheitswissenschaften > Lehrstuhl Medizinmanagement und Gesundheitswissenschaften - Univ.-Prof. Dr. Dr. Dr. h.c. Eckhard Nagel
Fakultäten
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit
Eingestellt am: 09 Mär 2021 06:38
Letzte Änderung: 06 Dec 2023 13:50
URI: https://eref.uni-bayreuth.de/id/eprint/63732