Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Increasing Daytime Stability Enhances Downslope Moisture Transport in the Subcanopy of an Even-Aged Conifer Forest in Western Oregon, USA

Titelangaben

Drake, S. A. ; Rupp, D. E. ; Thomas, Christoph ; Oldroyd, H. J. ; Schulze, Mark ; Jones, J. A.:
Increasing Daytime Stability Enhances Downslope Moisture Transport in the Subcanopy of an Even-Aged Conifer Forest in Western Oregon, USA.
In: Journal of Geophysical Research: Atmospheres. Bd. 127 (2022) Heft 9 . - e2021JD036042.
ISSN 2169-8996
DOI: https://doi.org/10.1029/2021JD036042

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
CAREER: A new direction into atmospheric near-surface transport for weak-wind conditions in plant canopies
0955444

Projektfinanzierung: National Science Foundation, USA

Abstract

Abstract Mountain breezes, including katabatic and anabatic flows, and temperature inversions are common features of forested mountain landscapes. However, the effects of mountain breezes on moisture transport in forests and implications for regional climate change are not well understood. A detailed, instrumented study was conducted from July to September 2012 in an even-aged conifer forest in the Oregon Cascade Range to investigate how temperature profiles within the forest canopy influenced atmospheric surface layer processes that ventilate the forest. Subcanopy inversion strength has a bimodal relationship to subcanopy wind speed and moisture flux from the forest. On days with relatively modest heating of the top of the canopy and weak subcanopy inversions, above canopy winds more efficiently mix subcanopy air, leading to greater than average vertical moisture flux and weaker than average along-slope, subcanopy water vapor advection. On days with strong heating of the top of the canopy and a strong subcanopy inversion, vertical moisture flux is suppressed, and daytime downslope winds are stronger than average under the canopy. Increased downslope winds lead to increased downslope transport of water vapor, carbon dioxide, and other scalars under the canopy. Increasing summer vapor pressure deficit in the Pacific Northwest will enhance both processes: vertical moisture transport by mountain breezes when subcanopy inversions are weak and downslope water vapor transport when subcanopy inversions are strong. These mountain breeze dynamics have implications for climate refugia in forested mountains, forest plantations, and other forested regions with a similar canopy structure and regional atmospheric forcings.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: mountain; subcanopy; wind; forest; advection; moisture
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Mikrometeorologie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Mikrometeorologie > Professur Mikrometeorologie - Univ.-Prof. Dr. Christoph K. Thomas
Profilfelder > Advanced Fields > Ökologie und Umweltwissenschaften
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Fakultäten
Profilfelder
Profilfelder > Advanced Fields
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
Eingestellt am: 07 Mai 2022 21:00
Letzte Änderung: 19 Mär 2024 14:40
URI: https://eref.uni-bayreuth.de/id/eprint/69557