Titelangaben
Lorentz, Vincent ; Waller, R. ; Waldhör, Stefan ; Wenger, Martin M. ; Gepp, Markus ; Schwarz, R. ; Koffel, S. ; Wacker, S. ; Akdere, M. ; Giegerich, Martin ; März, Martin:
Power antifuse device to bypass or turn-off battery cells in safety-critical and fail-operational systems.
2018
Veranstaltung: 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)
, Jan. 31–Feb. 2, 2018
, Hamilton, New Zealand.
(Veranstaltungsbeitrag: Kongress/Konferenz/Symposium/Tagung
,
Vortrag mit Paper
)
DOI: https://doi.org/10.1109/IESES.2018.8349850
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID EnCN: Energie Campus Nürnberg; Themenschwerpunkt: NET – Elektrische Netze Ohne Angabe ESTRELIA: Energy Storage with lowered cost and improved Safety and Reliability for electrical vehicles 285739 3Ccar: Integrated Components for Complexity Control in affordable electrified cars 662192 AutoDrive: Advancing fail-aware, fail-safe, and fail-operational electronic components, systems, and architectures for fully automated driving to make future mobility safer, affordable, and end-user acceptable 737469 MiBZ: Multifunktionale intelligente Batterie Zelle 03XP0027F |
---|---|
Projektfinanzierung: |
7. Forschungsrahmenprogramm für Forschung, technologische Entwicklung und Demonstration der Europäischen Union Parts of the research leading to these results have received funding from the Energie Campus Nürnberg (“EnCN”) financed by the State of Bavaria (Germany) as part of the program “Bavaria on the Move”, and the SEEDs project funded by the Bavarian State Ministry of Economic Affairs, Infrastructure, Transport and Technology. Further funding was received from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no 285739 (“ESTRELIA”); and from the ECSEL Joint Undertaking under grant agreement no 662192 (3Ccar) and grant agreement no 737469 (AutoDrive). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and the ECSEL member states (i.e., BMBF for Germany). Some further funding was received from the Federal Ministry of Education and Research of Germany under grant agreement no 03XP0027F (“MiBZ”). |
Abstract
This paper presents a new power electronic device, named power antifuse, providing an irreversible bypassing function for the current after having been ignited by an external electrical signal. The antifuse is a scalable power electronic device of 1 cm2 of active area. A pristine antifuse device provides an electric resistance of more than 100 mega-ohms between the terminals. After having been activated, the same antifuse device becomes a bidirectional bypass element offering less than 20 micro-ohms of resistance to the electric current. The activation time corresponding to the delay between the reception of the electrical trigger signal and the full conduction of the antifuse is less than 10 ms even at environment temperatures below -40°C. This paper shows how the integration of antifuse devices in battery cells can be used to bypass and turn-off lithium-ion battery cells thus improving the safety and availability of battery systems used in transport applications like aircraft, railways, ship and road vehicles. The characteristics of the proposed antifuse device make it also an ideal power electronic device for bypassing faulty series connected sub-systems used in high-availability applications or fail-operational redundant systems.
Weitere Angaben
Publikationsform: | Veranstaltungsbeitrag (Vortrag mit Paper) |
---|---|
Begutachteter Beitrag: | Ja |
Keywords: | Antifuse Device; Power Electronics; Lithium-Ion Battery; Fail-Operational; Safety; Redundant Architecture; Smart Battery Cells; Shutdown Battery Cells; Bypass Battery Cells; Aircraft; Railways; Ship and Road Vehicles |
Institutionen der Universität: | Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt Forschungseinrichtungen Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften |
Eingestellt am: | 03 Jun 2022 10:22 |
Letzte Änderung: | 23 Jan 2024 08:24 |
URI: | https://eref.uni-bayreuth.de/id/eprint/69859 |