Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Multi-scale morphology characterization of hierarchically porous silver foam electrodes for electrochemical CO₂ reduction

Title data

Hoffmann, Hendrik ; Paulisch-Rinke, Melanie Cornelia ; Gernhard, Marius ; Jännsch, Yannick ; Timm, Jana ; Brandmeir, Carola ; Lechner, Steffen ; Marschall, Roland ; Moos, Ralf ; Manke, Ingo ; Roth, Christina:
Multi-scale morphology characterization of hierarchically porous silver foam electrodes for electrochemical CO₂ reduction.
In: Communications Chemistry. Vol. 6 (2023) . - 50.
ISSN 2399-3669
DOI: https://doi.org/10.1038/s42004-023-00847-z

Official URL: Volltext

Project information

Project title:
Project's official title
Project's id
Open Access Publizieren
No information

Abstract in another language

Ag catalysts show high selectivities in the conversion of carbon dioxide to carbon monoxide during the electrochemical carbon dioxide reduction reaction (CO2RR). Indeed, highly catalytically active porous electrodes with increased surface area achieve faradaic conversion efficiencies close to 100%. To establish reliable structure-property relationships, the results of qualitative structural analysis need to be complemented by a more quantitative approach to assess the overall picture. In this paper, we present a combination of suitable methods to characterize foam electrodes, which were synthesised by the Dynamic Hydrogen Bubble Templation (DHBT) approach to be used for the CO2RR. Physicochemical and microscopic techniques in conjunction with electrochemical analyses provide insight into the structure of the carefully tailored electrodes. By elucidating the morphology, we were able to link the electrochemical deposition at higher current densities to a more homogenous and dense structure and hence, achieve a better performance in the conversion of CO2 to valuable products.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Physical Chemistry III
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Physical Chemistry III > Chair Physical Chemistry III - Univ.-Prof. Dr. Roland Marschall
Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Electrochemical Process Engineering
Faculties > Faculty of Engineering Science > Chair Electrochemical Process Engineering > Chair Electrochemical Process Engineering - Univ.-Prof. Dr. Christina Roth
Faculties > Faculty of Engineering Science > Chair Functional Materials
Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos
Profile Fields > Advanced Fields > Advanced Materials
Research Institutions > Central research institutes > Bayreuth Center for Material Science and Engineering - BayMAT
Profile Fields
Profile Fields > Advanced Fields
Research Institutions
Research Institutions > Central research institutes
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 21 Mar 2023 08:53
Last Modified: 10 Nov 2023 07:06
URI: https://eref.uni-bayreuth.de/id/eprint/74339