Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Resistive, Temperature-Independent Metal Oxide Gas Sensor for Detecting the Oxygen Stoichiometry (Air-Fuel Ratio) of Lean Engine Exhaust Gases

Title data

Steiner, Carsten ; Püls, Simon ; Bektas, Murat ; Müller, Andreas ; Hagen, Gunter ; Moos, Ralf:
Resistive, Temperature-Independent Metal Oxide Gas Sensor for Detecting the Oxygen Stoichiometry (Air-Fuel Ratio) of Lean Engine Exhaust Gases.
In: Sensors. Vol. 23 (2023) Issue 8 . - 3914.
ISSN 1424-8220
DOI: https://doi.org/10.3390/s23083914

Official URL: Volltext

Project information

Project title:
Project's official title
Project's id
Temperaturunabhängiger resistiver Sauerstoffsensor für die Regelung von Verbrennungsprozessen
MO 1060/41-1

Project financing: Deutsche Forschungsgemeinschaft

Abstract in another language

This study presents a resistive sensor concept based on Barium Iron Tantalate (BFT) to measure the oxygen stoichiometry in exhaust gases of combustion processes. The BFT sensor film was deposited on the substrate by the Powder Aerosol Deposition (PAD) method. In initial laboratory experiments, the sensitivity to pO2 in the gas phase was analyzed. The results agree with the defect chemical model of BFT materials that suggests the formation of holes h∙ by filling oxygen vacancies V∙∙O in the lattice at higher oxygen partial pressures pO2. The sensor signal was found to be sufficiently accurate and to have low time constants with changing oxygen stoichiometry. Further investigations on reproducibility and cross-sensitivities to typical exhaust gas species (CO2, H2O, CO, NO, …) confirmed a robust sensor signal that was hardly affected by other gas components. The sensor concept was also tested in real engine exhausts for the first time. The experimental data showed that the air-fuel ratio can be monitored by measuring the resistance of the sensor element, including partial and full-load operation modes. Furthermore, no signs of inactivation or aging during the test cycles were observed for the sensor film. Overall, a promising first data set was obtained in engine exhausts and therefore the BFT system is a possible cost-effective alternative concept to existing commercial sensors in the future. Moreover, the integration of other sensitive films for multi-gas sensor purposes might be an attractive field for future studies.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos
Profile Fields > Advanced Fields > Advanced Materials
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Research Institutions > Research Units > BERC - Bayreuth Engine Research Center
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 18 Apr 2023 06:24
Last Modified: 18 Apr 2023 06:24
URI: https://eref.uni-bayreuth.de/id/eprint/75964