Titelangaben
    
    Zeplin, Philip H. ; Maksimovikj, Nathalie C. ; Jordan, Martin C. ; Nickel, Joachim ; Lang, Gregor ; Leimer, Axel H. ; Römer, Lin ; Scheibel, Thomas:
Spider Silk Coatings as a Bioshield to Reduce Periprosthetic Fibrous Capsule Formation.
  
   
    
    In: Advanced Functional Materials.
      
      Bd. 24
      
      (2014)
       Heft  18
    .
     - S. 2658-2666.
    
    
ISSN 1616-3028
    
    
      
DOI: https://doi.org/10.1002/adfm.201302813
    
    
    
     
  
  
Abstract
Medical grade silicones have been employed for decades in medical applications.
The associated long-term complications, such as capsule formation
and contraction have, however, not been fully addressed yet. The aim
of this study is to elucidate if capsule formation and/or contraction can be
mitigated by veiling the surface of the silicone during the critical phase after
implantation. Medical grade silicone implants are homogeneously coated
with a micrometer thin layer of recombinant spider silk proteins. Biocompatibility
analysis in vitro and in vivo focuses on specifi c physiological reactions.
Applying quantitative methods for the determination of marker-specifi c gene
expression and protein concentration, it is detected that the silk coating
inhibits fi broblast proliferation, collagen I synthesis, and differentiation of
monocytes into CD68-positive histiocytes. It signifi cantly reduces capsule
thickness, post-operative infl ammation, synthesis and re-modeling of extracellular
matrix, and expression of contracture-mediating factors. Therefore,
coatings made of recombinant spider silk proteins considerably reduce major
post-operative complications associated with implantation of silicone-based
alloprosthetics, such as capsular fi brosis and contraction, rendering spider
silk coatings a bioshield for such implants.
        
 bei Google Scholar