Titelangaben
Müller-Herrmann, Susanne ; Scheibel, Thomas:
Enzymatic Degradation of Films, Particles, and Nonwoven Meshes Made of a Recombinant Spider Silk Protein.
In: ACS Biomaterials Science & Engineering.
Bd. 1
(2015)
Heft 4
.
- S. 247-259.
ISSN 2373-9878
DOI: https://doi.org/10.1021/ab500147u
Abstract
The performance of biomaterials in vivo is largely influenced by their stability and the rate and extent to which they degrade. Materials for tissue engineering applications, for example, have to be mechanically stable to support cell adhesion and proliferation without collapsing. On the other hand they need to be replaced gradually by native extracellular matrix and have to be (slowly) biodegradable. Therefore, it is of critical importance to be able to tune the degradation behavior of a biomaterial. Recombinantly produced spider silk proteins have been shown to be versatile biopolymers for medical applications. They can be processed into a variety of morphologies, and by chemical or genetic modification the properties can be adjusted to specific demands. Furthermore, in vivo experiments confirmed the lack of immunological reactions towards certain spider silks. In this study the degradation behavior of the recombinant spider silk protein eADF4(C16) in solution as well as processed into particles, films and non-woven meshes was analyzed, and the impact of crosslinking of the scaffolds was assessed thereon. In addition to two bacterial proteolytic model enzymes, protease type XIV from Streptomyces griseus (PXIV) and collagenase type IA from Clostridium histolyticum (CHC) used in all experiments, several recombinant human matrix metalloproteinases (MMPs) and one elastase were used in studying degradation of soluble eADF4(C16). For soluble eADF4(C16) all degradation kinetics were similar. In case of eADF4(C16) scaffolds significant differences were observable between PXIV and CHC. All scaffolds were more stable towards proteolytic degradation in the presence of CHC than in the presence of PXIV. Further, particles were degraded significantly faster than films, and non-woven meshes showed the highest proteolytic stability. Chemical crosslinking of the scaffolds led to a decrease in both degradation rate and extent.