Titelangaben
Jung, Hyunwook ; Sauerland, Lena ; Stocker, Sina ; Reuter, Karsten ; Margraf, Johannes T.:
Machine-Learning Driven Global Optimization of Surface Adsorbate Geometries.
In: npj Computational Materials.
Bd. 9
(2023)
.
- 114.
ISSN 2057-3960
DOI: https://doi.org/10.1038/s41524-023-01065-w
Abstract
The adsorption energies of molecular adsorbates on catalyst surfaces are key descriptors in computational catalysis research. For the relatively large reaction intermediates frequently encountered, e.g., in syngas conversion, a multitude of possible binding motifs leads to complex potential energy surfaces (PES), however. This implies that finding the optimal structure is a difficult global optimization problem, which leads to significant uncertainty about the stability of many intermediates. To tackle this issue, we present a global optimization protocol for surface adsorbate geometries which trains a surrogate machine learning potential on-the-fly. The approach is applicable to arbitrary surface models and adsorbates and minimizes both human intervention and the number of required DFT calculations by iteratively updating the training set with configurations explored by the algorithm. We demonstrate the efficiency of this approach for a diverse set of adsorbates on the Rh(111) and (211) surfaces.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik - Univ.-Prof. Dr. Johannes Theo Margraf |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
Eingestellt am: | 13 Nov 2023 12:43 |
Letzte Änderung: | 13 Nov 2023 12:43 |
URI: | https://eref.uni-bayreuth.de/id/eprint/87662 |