Titelangaben
Margraf, Johannes T.:
Science-Driven Atomistic Machine Learning.
In: Angewandte Chemie International Edition.
Bd. 62
(2023)
Heft 26
.
- e202219170.
ISSN 1521-3773
DOI: https://doi.org/10.1002/anie.202219170
Abstract
Machine learning (ML) algorithms are currently emerging as powerful tools in all areas of science. Conventionally, ML is understood as a fundamentally data-driven endeavour. Unfortunately, large well-curated databases are sparse in chemistry. In this contribution, I therefore review science-driven ML approaches which do not rely on “big data”, focusing on the atomistic modelling of materials and molecules. In this context, the term science-driven refers to approaches that begin with a scientific question and then ask what training data and model design choices are appropriate. As key features of science-driven ML, the automated and purpose-driven collection of data and the use of chemical and physical priors to achieve high data-efficiency are discussed. Furthermore, the importance of appropriate model evaluation and error estimation is emphasized.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik > Lehrstuhl Künstliche Intelligenz in der physiko-chemischen Materialanalytik - Univ.-Prof. Dr. Johannes Theo Margraf |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
Eingestellt am: | 13 Nov 2023 12:18 |
Letzte Änderung: | 13 Nov 2023 12:18 |
URI: | https://eref.uni-bayreuth.de/id/eprint/87665 |