Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Constructing tri-functional modification for spinel LiNi₀.₅Mn₁.₅O₄ via fast ion conductor

Titelangaben

Li, Li ; Zhao, Rui ; Pan, Du ; Yi, Shuhong ; Gao, Liufei ; He, Guanjie ; Zhao, Huiling ; Yu, Caiyan ; Bai, Ying:
Constructing tri-functional modification for spinel LiNi₀.₅Mn₁.₅O₄ via fast ion conductor.
In: Journal of Power Sources. Bd. 450 (2020) . - 227677.
ISSN 0378-7753
DOI: https://doi.org/10.1016/j.jpowsour.2019.227677

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Instable surface structure and low capacity retention hinder the further application of high voltage LiNi0.5Mn1.5O4 (LNMO) cathode in lithium-ion battery. In order to promote its electrochemical performances, Li6.4La3Al0.2Zr2O12 (LLAZO) with the intrinsic property of fast ion conductivity has been employed as a protective layer to modify surface of LNMO. By regulating the LLAZO contents, 1 wt LLAZO coated LNMO (LLAZO-1) cathode shows a high capacity of 92.1 mAh g−1 over 600 cycles with a capacity retention of 72.6 at 1 C and a reversible capacity of 57.9 mAh g−1 at 20 C, much higher than those of pristine LNMO. Further investigation indicates that the greatly improved electrochemical performances of LLAZO-1 can be attributed to the LLAZO modification, which including the LLAZO surface coating and La3+ and Zr4+ gradient co-doping. In addition, the LLAZO precursor significantly restricts the growth of LNMO precursor particles during calcination process, shorting Li+ migration pathway. Thus, modification strategy effectively improves the structure stability of LNMO, accompanied with the enhancement in lithium-ion diffusion kinetics performances and confinement in particle growth. This optimization approach with tri-functions sheds light on novel electrode design and construction in rechargeable batteries.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Lithium-ion batteries; LiNiMnO; LiLaAlZrO; Tri-functional modification
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 27 Nov 2023 09:03
Letzte Änderung: 27 Nov 2023 09:03
URI: https://eref.uni-bayreuth.de/id/eprint/87866