Titelangaben
Ou, Ruchuan ; Schießl, Jonas ; Baumann, Michael Heinrich ; Grüne, Lars ; Faulwasser, Timm:
A Polynomial Chaos Approach to Stochastic LQ Optimal Control: Error Bounds and
Infinite-Horizon Results.
Dortmund ; Bayreuth
,
2023
DOI: https://doi.org/10.48550/arXiv.2311.17596

Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Stochastic Optimal Control and MPC - Dissipativity, Risk, and Performance 499435839 |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
The stochastic linear-quadratic regulator problem subject to Gaussian disturbances is well known and usually addressed via a moment-based reformulation. Here, we leverage polynomial chaos expansions, which model random variables via series expansions in a suitable L^2 probability space, to tackle the non-Gaussian case. We present the optimal solutions for finite and infinite horizons. Moreover, we quantify the truncation error and we analyze the infinite-horizon asymptotics. We show that the limit of the optimal trajectory is the unique solution to a stationary optimization problem in the sense of probability measures. A numerical example illustrates our findings.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
- A Polynomial Chaos Approach to Stochastic LQ Optimal Control: Error Bounds and Infinite-Horizon Results. (deposited 01 Dec 2023 05:59) [Aktuelle Anzeige]