Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Design for Sustainable Additive Manufacturing (DfsAM) : Preperation and Validation of a Transversely Isotropic Simulation Model for FFF Components Made from Virgin and Recycled Polypropylene Filaments

Titelangaben

Nagengast, Niko ; Scharl, Tizian ; Frisch, Michael ; Neuber, Christian ; Ruckdäschel, Holger ; Schmidt, Hans-Werner ; Fuss, Franz Konstantin:
Design for Sustainable Additive Manufacturing (DfsAM) : Preperation and Validation of a Transversely Isotropic Simulation Model for FFF Components Made from Virgin and Recycled Polypropylene Filaments.
In: 2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). - Piscataway, NJ : IEEE , 2023 . - S. 204-212
ISBN 979-8-3503-1309-3
DOI: https://doi.org/10.1109/ICMIMT59138.2023.10199510

Abstract

Simulation modeling takes up an important role in virtual product development in terms of cost and time improvement. Due to the anisotropic characteristics of the Fused Filament Fabrication (FFF) process, material models with bulk properties for Finite-Element-Analysis (FEA) lack accuracy. This problem was addressed in this research by tension (DIN ISO 527) and compression (DIN ISO 604) tests of polypropylene and elastic polypropylene filament for FFF in 0° and 90° printing directions. Furthermore, a recycling cycle for both filaments was carried out and reassessed. Based on the test results a transversely isotropic material model with bilinear hardening was generated and validated for the standard polypropylene filament with a three-point bending test (DIN ISO 178). The material model was capable of reasonably simulating the component behavior for the complex load scenarios up to a strain of 15 %. The combination of a cost, time and resource-saving simulation approach with a circular material strategy proposes a way for fusing performance and sustainability in the field of Additive Manufacturing (AM). The combination of recycling processes and material models, both assessed and verified experimentally, respectively, will help adapt the product geometry to the material properties modified from recycling.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Makromolekulare Chemie I > Lehrstuhl Makromolekulare Chemie I - Univ.-Prof. Dr. Hans-Werner Schmidt
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomechanik > Lehrstuhl Biomechanik - Univ.-Prof. Dr. Franz Konstantin Fuß
Profilfelder > Advanced Fields > Neue Materialien
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Profilfelder > Emerging Fields > Lebensmittel- und Gesundheitswissenschaften
Forschungseinrichtungen > Forschungsstellen > Forschungsstelle für Additive Innovationen - Campus Additive.Innovationen (CA.I)
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 08 Mär 2024 09:40
Letzte Änderung: 08 Mär 2024 09:40
URI: https://eref.uni-bayreuth.de/id/eprint/88840