Title data
Biberger, Simon ; Spies, Maximilian ; Schötz, Konstantin ; Kahle, Frank-Julian ; Leupold, Nico ; Moos, Ralf ; Grüninger, Helen ; Köhler, Anna ; Panzer, Fabian:
Optical In-Situ spectroscopy and reactive spin coating for improved control of perovskite thin film fabrication.
2024
Event: DPG-Frühjahrstagung
, 17.03.-22.03.2024
, Berlin.
(Conference item: Conference
,
Speech
)
Abstract in another language
Efficient solar cells require a high-quality halide perovskite (HP) film, which is typically achieved through a solution-based solvent engineering spin coating approach. Here, HP crystallization is induced by applying an antisolvent (AS) to the precursor solution film on the spinning substrate after a specific spinning time. The process involves various controllable and uncontrollable parameters that need to be considered. As a result, fabrication recipes (such as spin speed or timing of AS dispensing) are usually developed empirically and vary between labs. Additionally, factors like changes in the atmosphere that are hard to control can introduce substantial variations between and even within batches of devices. In this work we developed a closed-loop feedback system based on our multimodal optical In-Situ spin coater system in combination with a real-time analysis of the optical spectra during spin coating. We monitor the solvent layer thickness as the parameter of interest during the spin coating. When the target level is reached, the HP crystallization is induced by dispensing the AS via a syringe pump. This method compensates for the effects of uncontrolled parameters, like variation in solvent evaporation rate due to atmospheric changes, thus leading to reproducible film quality.