Titelangaben
Pracht, Philipp ; Pillai, Yuthika ; Kapil, Venkat ; Csányi, Gábor ; Gönnheimer, Nils ; Vondrák, Martin ; Margraf, Johannes T. ; Wales, David J.:
Efficient Composite Infrared Spectroscopy: Combining the Double-Harmonic Approximation with Machine Learning Potentials.
In: Journal of Chemical Theory and Computation.
Bd. 20
(2024)
Heft 24
.
- S. 10986-11004.
ISSN 1549-9626
DOI: https://doi.org/10.1021/acs.jctc.4c01157
Abstract
Vibrational spectroscopy is a cornerstone technique for molecular characterization and offers an ideal target for the computational investigation of molecular materials. Building on previous comprehensive assessments of efficient methods for infrared (IR) spectroscopy, this study investigates the predictive accuracy and computational efficiency of gas-phase IR spectra calculations, accessible through a combination of modern semiempirical quantum mechanical and transferable machine learning potentials. A composite approach for IR spectra prediction based on the double-harmonic approximation, utilizing harmonic vibrational frequencies in combination squared derivatives of the molecular dipole moment, is employed. This approach allows for methodical flexibility in the calculation of IR intensities from molecular dipoles and the corresponding vibrational modes. Various methods are systematically tested to suggest a suitable protocol with an emphasis on computational efficiency. Among these methods, semiempirical extended tight-binding (xTB) models, classical charge equilibrium models, and machine learning potentials trained for dipole moment prediction are assessed across a diverse data set of organic molecules. We particularly focus on the recently reported foundational machine learning potential MACE-OFF23 to address the accuracy limitations of conventional low-cost quantum mechanical and force-field methods. This study aims to establish a standard for the efficient computational prediction of IR spectra, facilitating the rapid and reliable identification of unknown compounds and advancing automated high-throughput analytical workflows in chemistry.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen - Univ.-Prof. Dr. Johannes Theo Margraf |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
Eingestellt am: | 13 Jan 2025 08:18 |
Letzte Änderung: | 13 Jan 2025 08:40 |
URI: | https://eref.uni-bayreuth.de/id/eprint/91541 |