Titelangaben
Ou, Ruchuan ; Schießl, Jonas ; Baumann, Michael Heinrich ; Grüne, Lars ; Faulwasser, Timm:
A polynomial chaos approach to stochastic LQ optimal control : Error bounds and infinite-horizon results.
In: Automatica.
Bd. 174
(2025)
.
- 112117.
ISSN 1873-2836
DOI: https://doi.org/10.1016/j.automatica.2025.112117
Dies ist die aktuelle Version des Eintrags.
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Stochastic Optimal Control and MPC - Dissipativity, Risk, and Performance 499435839 |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
The stochastic linear–quadratic regulator problem subject to Gaussian disturbances is well known and usually addressed via a moment-based reformulation. Here, we leverage polynomial chaos expansions, which model random variables via series expansions in a suitable L2 probability space, to tackle the non-Gaussian case. We present the optimal solutions for finite and infinite horizons and we analyze the infinite-horizon asymptotics. We show that the limit of the optimal state-input trajectory is the unique solution to a corresponding stochastic stationary optimization problem in the sense of probability measures. Moreover, we provide a constructive error analysis for finite-dimensional polynomial chaos approximations of the optimal solutions and of the optimal stationary pair in non-Gaussian settings. A numerical example illustrates our findings.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
A Polynomial Chaos Approach to Stochastic LQ Optimal Control: Error Bounds and
Infinite-Horizon Results. (deposited 01 Dec 2023 05:59)
- A polynomial chaos approach to stochastic LQ optimal control : Error bounds and infinite-horizon results. (deposited 14 Feb 2025 08:24) [Aktuelle Anzeige]