Titelangaben
Karasenko, Andreas:
Sentiment Analysis in Marketing : From Fundamentals to State-of-the-art.
In: Marketing : ZFP.
Bd. 47
(2025)
Heft 1
.
- S. 45-70.
ISSN 0344-1369
DOI: https://doi.org/10.15358/0344-1369-2025-1-45
Abstract
Sentiment Analysis (SA) has found widespread success in marketing. Marketing scholars and practitioners have used SA to identify pain points, user requirements and issues using freely available online customer reviews from shopping websites, or user generated content from online blogs. These can then be used to improve products or services, adjust marketing strategies, and react ad hoc to new issues using automated decision-making pipelines, or use interpretability frameworks to understand the reasons behind sentiment. Despite this potential, research into SA is fragmented, oftentimes lacking a formal pipeline for their empirical evaluations and model selection. Similarly, model comparisons that aim to guide researchers in their model selection often focus on specific aspects and don’t account for current developments in natural language processing. From this background this paper first provides a SA pipeline, showing all common steps involved in SA. We then validate this pipeline in a case study by conducting a systematic model comparison of 12 machine learning, deep learning transfer learning, and few-shot learning models across 12 diverse user generated review datasets. We then use two popular interpretability frameworks to show, how the classifications of black-box models can be interpreted. Based on these results, as well as the strengths and weaknesses of the evaluated models, we derive actionable and practical guidelines for model selection while accounting for multiple key ex-ante considerations. To facilitate the model selection process of researchers we provide readily available Python codes for the complete case study.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Begutachteter Beitrag: | Ja |
Institutionen der Universität: | Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Betriebswirtschaftslehre XIV - Marketing und Innovation > Lehrstuhl Betriebswirtschaftslehre XIV - Marketing und Innovation - Univ.-Prof. Dr. Daniel Baier |
Titel an der UBT entstanden: | Ja |
Themengebiete aus DDC: | 300 Sozialwissenschaften > 330 Wirtschaft |
Eingestellt am: | 15 Mai 2025 05:43 |
Letzte Änderung: | 15 Mai 2025 05:43 |
URI: | https://eref.uni-bayreuth.de/id/eprint/93571 |