Literature by the same author
plus at Google Scholar

Bibliografische Daten exportieren
 

Integrating NOx Gas Sensor: Concept, Sensitivity to NO/NO2 and Benefits of the Integrating Sensing Principle

Title data

Geupel, Andrea ; Moos, Ralf ; Kubinski, David J. ; Visser, Jacobus H.:
Integrating NOx Gas Sensor: Concept, Sensitivity to NO/NO2 and Benefits of the Integrating Sensing Principle.
2011
Event: Sensor 2011 , 07.-09.07.2011 , Nürnberg, Deutschland.
(Conference item: Conference , Other Presentation type)
DOI: https://doi.org/10.5162/sensor11/d4.2

Official URL: Volltext

Abstract in another language

On-Board-Diagnostics and emission regulations demand highly sensitive sensors for the detection of very low levels of NOx. For this purpose, the idea of an integrating NOx-sensor was developed. Via a lean NOx trap (LNT) NOx-molecules are accumulated in the sensitive layer and the total amount of NOx instead of the actual NOxconcentration, cNOx, is measured, promising an improved accuracy in the measurement of the accumulated NOx levels which is especially helpful for low ppm level emissions. In this presentation, the integrating sensing principle is explained and measurement data demonstrating the outstanding performance of this novel sensing concept are shown.

Concept: LNT materials contain precious metals like Pt to oxidize NO to NO2. The latter is successively chemically stored at the storage sites (e.g. BaCO3) in the form of nitrates. The material transformation is accompanied by changing electrical properties. Thus, recording the electrical properties of the sensitive layer enables the detection of the timely-integrated amount of NOx, ANOx. The relative resistance change |DeltaR/R0| is increasing in the presence of NOx but remains constant at 0 ppm NOx. Ideally, the characteristic line gives a linear correlation between ANOx and |DeltaR/R0|. Since the storage capacity is limited, regeneration (e.g. in the rich atmosphere) will be required once saturation effects lower the sensitivity.

Measurement results: The integrating properties of the LNT-coated samples were verified in various tests. |DeltaR/R0| increases during NOx exposure but remains constant at 0 ppm NOx (no desorption). Double cNOx results in double |DeltaR/R0| on the time-scale. The characteristic line gives a linear correlation between |DeltaR/R0| and ANOx independent on cNOx till saturation occurs. Regeneration with H2 is very effective to recover the integrating properties. Since the nitrate formation is controlled by the kinetics and thermodynamics, the sensitivity is also influenced by the temperature. At about 375°C, the presented integrating NO x sensor shows high sensitivity and sufficient nitrate stability. Due to the good catalytic properties of the LNT, NO is locally in equilibrium with NO2, and the sensitivity to NO emissions is the same as to NO2, which can be stored directly. The integrating sensing principle using a NOx storage material as sensitive layer shows great potential for the highly sensitive and accurate detection of very low levels of total NOx at 350°C in lean gas atmospheres.

Further data

Item Type: Conference item (Other)
Refereed: Yes
Institutions of the University: Faculties > Faculty of Engineering Science
Faculties > Faculty of Engineering Science > Chair Functional Materials > Chair Functional Materials - Univ.-Prof. Dr.-Ing. Ralf Moos
Faculties
Faculties > Faculty of Engineering Science > Chair Functional Materials
Profile Fields > Advanced Fields > Advanced Materials
Research Institutions > Research Centres > Bayreuth Center for Material Science and Engineering - BayMAT
Profile Fields
Profile Fields > Advanced Fields
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 600 Technology, medicine, applied sciences > 620 Engineering
Date Deposited: 30 Mar 2015 12:24
Last Modified: 13 Apr 2016 07:08
URI: https://eref.uni-bayreuth.de/id/eprint/9453