Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Universally Accurate or Specifically Inadequate? Stress-Testing General Purpose Machine Learning Interatomic Potentials

Titelangaben

Jakob, Konstantin S. ; Reuter, Karsten ; Margraf, Johannes T.:
Universally Accurate or Specifically Inadequate? Stress-Testing General Purpose Machine Learning Interatomic Potentials.
In: Advanced Intelligent Discovery. (2025) . - 202500031.
ISSN 2943-9981
DOI: https://doi.org/10.1002/aidi.202500031

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Machine learning interatomic potentials (MLIPs) have revolutionized the field of atomistic materials simulation, both due to their remarkable accuracy and their computational efficiency compared to established ab initio methods. Very recently, several general purpose MLIPs have been reported, which are broadly applicable across the periodic table. These represent a fascinating opportunity for materials discovery, provided that they are robust and transferable. In order to stress test current general purpose MLIPs, we evaluate the performance of M3GNet and MACE models in element-substitution based structure prediction workflows for a diverse range of inorganic, crystalline materials. Importantly, these results are compared with a full density functional based workflow, shifting the focus from merely evaluating single-point energy and force predictions of MLIPs toward an end-to-end perspective. We find that general purpose MLIPs are in general well-suited to accelerate computational materials discovery and structure prediction, but also display certain systematic biases. To address these, a simple metric to quantify MLIP reliability for materials discovery is introduced. As a by-product, we also predict novel ground state structures for 15 out of 100 analyzed compositions.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: element substitution; inorganic materials discovery; machine learning potentials
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen - Univ.-Prof. Dr. Johannes Theo Margraf
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Research Center for AI in Science and Society
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 10 Nov 2025 09:16
Letzte Änderung: 10 Nov 2025 09:16
URI: https://eref.uni-bayreuth.de/id/eprint/95159