Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Learning Crystallographic Disorder : Bridging Prediction and Experiment in Materials Discovery

Titelangaben

Jakob, Konstantin S. ; Walsh, Aron ; Reuter, Karsten ; Margraf, Johannes T.:
Learning Crystallographic Disorder : Bridging Prediction and Experiment in Materials Discovery.
In: Advanced Materials. (2025) . - e14226.
ISSN 1521-4095
DOI: https://doi.org/10.1002/adma.202514226

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Recent computational materials discovery efforts have led to an enormous number of predictions of previously unknown, potentially stable inorganic, crystalline compounds. In particular, both high-throughput screenings and generative models have benefited tremendously from recent advances in computational resources and available data. However, these efforts are currently limited to predicting pristine crystalline materials. As a consequence, many of these predictions cannot be realized in experiments, where kinetic effects, defects, and crystallographic disorder can be crucial. To address this shortcoming, the current work aims to introduce disorder into computational materials discovery with machine learning (ML) based classification models. Trained on the inorganic crystal structure database (ICSD), these classifiers capture the chemical trends of crystallographic disorder and estimate the prevalence of disorder in computational databases produced by the Materials Project or Graph Networks for Materials Science (GNoME) initiatives. This opens the door toward disorder-aware computational materials discovery workflows, bridging the gap between prediction and experiment.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: disorder; ICSD; machine learning; materials discovery
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen - Univ.-Prof. Dr. Johannes Theo Margraf
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Research Center for AI in Science and Society
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 10 Nov 2025 11:18
Letzte Änderung: 10 Nov 2025 11:18
URI: https://eref.uni-bayreuth.de/id/eprint/95165