Titelangaben
Strothmann, Robert ; Amanpur, Mehran ; Neveselý, Tomáš ; Hecht, Stefan ; Reuter, Karsten ; Margraf, Johannes T.:
Machine learning driven design of spiropyran photoswitches.
In: Digital Discovery.
Bd. 4
(2025)
.
- S. 3098-3108.
ISSN 2635-098X
DOI: https://doi.org/10.1039/D5DD00327J
Abstract
This study presents the development and application of a generative machine learning model for the design of novel spiropyran photoswitches with enhanced switching speed and absorption bands with small spectral overlap between the open and closed form (i.e. high addressability). Leveraging a scaffold decoration approach, we fine-tuned a general chemical recurrent neural network (RNN) model on a curated dataset of photoswitches. The fine-tuned model was evaluated against both the pretrained baseline and literature-reported spiropyran compounds, demonstrating superior performance in generating diverse and novel candidates. Notably, the fine-tuned model effectively mitigates common biases in decoration patterns and functional group selection observed in the literature. The study also outlines the synthesis and experimental characterization of several newly designed spiropyran photoswitches, validating the design principles derived from the generative model. These findings highlight the potential of generative models in accelerating the discovery of advanced molecular photoswitches with tailored properties.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift |
|---|---|
| Begutachteter Beitrag: | Ja |
| Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen > Lehrstuhl Physikalische Chemie V - Theorie und Maschinelles Lernen - Univ.-Prof. Dr. Johannes Theo Margraf Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Research Center for AI in Science and Society |
| Titel an der UBT entstanden: | Ja |
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
| Eingestellt am: | 10 Nov 2025 11:43 |
| Letzte Änderung: | 10 Nov 2025 11:43 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/95166 |

bei Google Scholar