Titelangaben
Wang, Zilong ; Shen, Longyun ; Ma, Yilin ; Law, Ho Mei ; Xu, Shengjun ; Bi, Yixin ; Robson, Matthew J. ; Wang, Yuhao ; Gröschel, André H. ; Chen, Qing ; Ciucci, Francesco:
Enthalpy-Driven Molecular Engineering Enables High-Performance Quasi-Solid-State Electrolytes for Long Life Lithium Metal Batteries.
In: Advanced Materials.
Bd. 37
(2025)
Heft 24
.
- 2419335.
ISSN 1521-4095
DOI: https://doi.org/10.1002/adma.202419335
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Enthüllung der mikrostrukturellen und elektrochemischen Entwicklung einer Si/Sn-Nanofaserverbundanode für Lithium-Ionen-Batterien 533115776 Open Access Publizieren Ohne Angabe |
|---|---|
| Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
The advancement of lithium metal batteries toward their theoretical energy density potential remains constrained by safety and performance issues inherent to liquid electrolytes. Quasi-solid-state electrolytes (QSSEs) based on poly-1,3-dioxolane (poly-DOL) represent a promising development, yet challenges in achieving satisfactory Coulombic efficiency and long-term stability have impeded their practical implementation. While lithium nitrate addition can enhance efficiency, its incorporation results in prohibitively slow polymerization rates spanning several months. In this work, high-polymerization-enthalpy 1,1,1-trifluoro-2,3-epoxypropane is introduced as a co-polymerization promoter, successfully integrating lithium nitrate into poly-DOL-based QSSEs. The resulting electrolyte demonstrates exceptional performance with 2.23 mS cm−1 of ionic conductivity at 25 °C, a Coulombic efficiency of 99.34% in Li|Cu cells, and stable lithium metal interfaces sustained through 1300 h of symmetric cell cycling. This co-polymerization approach also suppresses poly-DOL crystallization, enabling Li|LiFePO4 cells to maintain stability beyond 2000 cycles at 1C. Scale-up validation in a ≈1 Ah Li|NCM811 pouch cell achieves 94.4% capacity retention over 60 cycles. This strategy establishes a new pathway for developing high-performance, in situ polymerized quasi-solid-state batteries for practical energy storage applications.

bei Google Scholar