Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Semi-supervised battery state of health estimation for field applications

Titelangaben

Hadzalic, Nejira ; Hamar, Jacob ; Fischer, Marco ; Erhard, Simon ; Schmidt, Jan Philipp:
Semi-supervised battery state of health estimation for field applications.
In: Energy and AI. Bd. 22 (2025) . - 100575.
ISSN 2666-5468
DOI: https://doi.org/10.1016/j.egyai.2025.100575

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Open Access Publizieren
Ohne Angabe

Abstract

Battery electric vehicles are exposed to highly diverse operating conditions and driving behaviors that strongly influence degradation pathways, yet these real-world complexities are only partially captured in laboratory aging tests. This study investigates a semi-supervised learning approach for robust estimation of battery state of health, defined as the ratio of remaining to nominal capacity. The method integrates a multi-view co-training algorithm with a rule-based pseudo labeling mechanism and is developed and validated using field data from 3000 BMW i3 vehicles with battery capacity of 60Ah, collected since 2013 across 34 countries. The available data comprises standardized full charge capacity measurements, which serve as ground truth labels. The proposed training and validation pipeline is designed to address challenges inherent in real-world data generation and is particularly advantageous during early deployment of new battery technologies, when labeled data is scarce. By incrementally incorporating newly available labeled data into both evaluation and retraining, the model adapts to heterogeneous aging patterns observed in the field. Comparative analysis demonstrates that, relative to a supervised benchmark, the proposed method reduces estimation error by 28 under limited-label conditions and by 6 under optimally labeled scenarios, highlighting its robustness for field applications.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Lithium-ion battery; State of health estimation; Semi-supervised learning; Field data; Machine learning
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Systemtechnik elektrischer Energiespeicher > Lehrstuhl Systemtechnik elektrischer Energiespeicher - Univ.-Prof. Dr. Jan Philipp Schmidt
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 05 Feb 2026 13:55
Letzte Änderung: 05 Feb 2026 13:55
URI: https://eref.uni-bayreuth.de/id/eprint/96027