Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Structural Diversity in Early-Stage Biofilm Formation on Microplastics Depends on Environmental Medium and Polymer Properties

Title data

Ramsperger, Anja ; Stellwag, Anja C. ; Caspari, Anja ; Fery, Andreas ; Lüders, Tillmann ; Kress, Holger ; Löder, Martin G. J. ; Laforsch, Christian:
Structural Diversity in Early-Stage Biofilm Formation on Microplastics Depends on Environmental Medium and Polymer Properties.
In: Water. Vol. 12 (November 2020) Issue 11 . - No. 3216.
ISSN 2073-4441
DOI: https://doi.org/10.3390/w12113216

Official URL: Volltext

Project information

Project title:
Project's official titleProject's id
SFB 1357 MikroplastikSFB1357

Project financing: Deutsche Forschungsgemeinschaft

Abstract in another language

Plastics entering the environment can not only undergo physical degradation and fragmentation processes, but they also tend to be colonized by microorganisms. Microbial colonization and the subsequent biofilm formation on plastics can alter their palatability to organisms and result in a higher ingestion as compared to pristine plastics. To date, the early stage of biofilm formation on plastic materials has not been investigated in context of the environmental medium and polymer properties. We explored the early-stage biofilm formation on polyamide (PA), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) after incubation in freshwater and artificial seawater and categorized the structural diversity on images obtained via scanning electron microscopy. Furthermore, by the measurement of the initial ζ-potential of the plastic materials, we found that PA with the highest negative ζ-potential tended to have the highest structural diversity, followed by PET and PVC after incubation in freshwater. However, PVC with the lowest negative ζ-potential showed the highest structural diversity after incubation in seawater, indicating that the structural diversity is additionally dependent on the incubation medium. Our results give insights into how the incubation medium and polymer properties can influence the early-stage biofilm formation of just recently environmentally exposed microplastics. These differences are responsible for whether organisms may ingest microplastic particles with their food or not.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: Microplastic; Plastic; Biofilm; SEM; ζ-potential; EPS
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Professor Experimental Physics VI - Biologial Physics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Professor Experimental Physics VI - Biologial Physics > Professor Experimental Physics VI - Biologial Physics - Univ.-Prof. Dr. Holger Kreß
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Animal Ecology I
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Animal Ecology I > Chair Animal Ecology I - Univ.-Prof. Dr. Christian Laforsch
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Ecological Microbiology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Ecological Microbiology > Chair Ecological Microbiology - Univ.-Prof. Dr. Tillmann Lüders
Profile Fields > Advanced Fields > Polymer and Colloid Science
Profile Fields > Advanced Fields > Ecology and the Environmental Sciences
Research Institutions > Collaborative Research Centers, Research Unit > SFB 1357 - MIKROPLASTIK
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 500 Natural sciences
500 Science > 530 Physics
500 Science > 540 Chemistry
500 Science > 570 Life sciences, biology
Date Deposited: 19 Nov 2020 08:00
Last Modified: 19 Nov 2020 08:00
URI: https://eref.uni-bayreuth.de/id/eprint/55772