Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Conformational Stability and Interplay of Helical N- and C-Terminal Domains with Implications on Major Ampullate Spidroin Assembly

Titelangaben

Bauer, Joschka ; Scheibel, Thomas:
Conformational Stability and Interplay of Helical N- and C-Terminal Domains with Implications on Major Ampullate Spidroin Assembly.
In: Biomacromolecules. Bd. 18 (2017) Heft 3 . - S. 835-845.
ISSN 1526-4602
DOI: https://doi.org/10.1021/acs.biomac.6b01713

Abstract

Major ampullate spidroin (MaSp) assembly starts in the abdomen of the spider, where spidroins are stored as a liquid dope at a high concentration. The dope is squeezed into the spinning duct, and assembly is finished upon drawing of fibers. Unwanted aggregation of the spidroin solution in the gland is suppressed by prestructuring of the spidroins in micelle-like assemblies, with their hydrophobic stretches being hidden from the solvent and the hydrophilic nonrepetitive amino (NRN) and carboxy (NRC) terminal domains being exposed on the micelle surface. Conversion of the fluid dope into a solid fiber is induced within the spinning duct by acidification and ion exchange (sodium chloride against potassium phosphate), with the impact on the structure of the NRN and NRC domains acting as a regulatory switch for fiber assembly. While NRN dimerizes pH-dependently in an antiparallel fashion (i.e. quaternary structural changes), the tertiary structure of dimeric NRC is changed by shear stress and a drop in pH, inducing the alignment of the intrinsically unstructured core domains accompanied by β-sheet formation of motifs of the core domain. Here, the conformational stability of NRN1 and NRC1 of Latrodectus hesperus MaSp1 were studied using independent techniques such as circular dichroism, fluorescence and absorbance spectroscopy, and scanning electron, transmission electron, and atomic force microscopy. In this context, it could be shown that strong, non-natural acidification drives NRC1 to unfold and aggregate into β-sheet-rich structures, preventing recombinant spidroins from assembling into aligned fibrils. Interestingly, NRN1 and NRC1 apparently do not interact with each other, making spidroin assembly easy to control step-by-step and straightforward due to missing unproductive side reactions.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Profilfelder > Advanced Fields > Neue Materialien
Profilfelder > Advanced Fields > Molekulare Biowissenschaften
Profilfelder > Emerging Fields
Profilfelder > Emerging Fields > Lebensmittel- und Gesundheitswissenschaften
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Forschungseinrichtungen > Forschungszentren > Bayreuther Materialzentrum - BayMAT
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 15 Feb 2017 07:47
Letzte Änderung: 22 Apr 2022 10:42
URI: https://eref.uni-bayreuth.de/id/eprint/36077