Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues

Titelangaben

Roshanbinfar, Kaveh ; Vogt, Lena ; Greber, Boris ; Diecke, Sebastian ; Boccaccini, Aldo R. ; Engel, Felix B. ; Scheibel, Thomas:
Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues.
In: Advanced Functional Materials. Bd. 28 (2018) Heft 42 . - 1803951.
ISSN 1616-3028
DOI: https://doi.org/10.1002/adfm.201803951

Abstract

Cardiac tissue engineering is a promising strategy to treat heart failure. Yet, several issues remain to be resolved including the prevention of arrhythmia caused by inefficient electrical coupling within the graft and between graft and host tissue. Here, a biohybrid hydrogel composed of collagen, alginate, and electroconductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is developed that exhibits extracellular matrix–mimetic fibrous structures and enhanced electrical coupling as well and cardiomyocyte maturation. Presence of PEDOT:PSS in the hydrogel improves electrical conductivity and prevents arrhythmia of tissue constructs containing neonatal rat cardiomyocytes. Moreover, it results in increasing beating frequencies reaching more than 200 beats min−1 endogenous frequencies. In addition, cardiomyocytes exhibit increased alignment and density in these constructs, improved sarcomere organization, and enhanced connexin 43 expression, suggesting maturation of the cardiac tissue. Importantly, the here developed electroconductive biohybrid hydrogels also improve maturation and beating properties of human-induced pluripotent stem cell–derived cardiomyocytes. These cells exhibit 1.9 µm near adult sarcomeric length, enhanced beating frequency, increased speed of contraction, and larger contraction amplitude. Collectively, the data demonstrate the potential of this electroconductive biohybrid hydrogel to improve tissue engineering approaches to treat heart failure and possibly diseases of other electrically sensitive tissues.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: electroconductive hydrogels; heart; hiPSC; maturation; tissue engineering
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Profilfelder > Advanced Fields > Neue Materialien
Profilfelder > Advanced Fields > Molekulare Biowissenschaften
Profilfelder > Emerging Fields
Profilfelder > Emerging Fields > Lebensmittel- und Gesundheitswissenschaften
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Forschungseinrichtungen > Forschungszentren > Bayreuther Materialzentrum - BayMAT
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 25 Sep 2018 06:11
Letzte Änderung: 14 Feb 2023 13:26
URI: https://eref.uni-bayreuth.de/id/eprint/45878