Titelangaben
Michlik, Tobias ; Rosin, Andreas ; Gerdes, Thorsten ; Moos, Ralf:
Improved Discharge Capacity of Zinc Particles by Applying Bismuth-Doped Silica Coating for Zinc-Based Batteries Batteries.
In: Batteries.
Bd. 5
(2019)
Heft 1
.
- 32.
ISSN 2313-0105
DOI: https://doi.org/10.3390/batteries5010032
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID PrintEnergy 13XP5015A Open Access Publizieren Ohne Angabe |
---|---|
Projektfinanzierung: |
Bundesministerium für Bildung und Forschung |
Abstract
Corrosion and discharge behavior of battery-grade zinc particles coated with a silica layer doped with bismuth was investigated and compared with untreated zinc powder. Electrochemical investigations were carried out in half-cell configuration. The electrolyte was 6 M KOH in excess. Coated zinc particles provided a discharge capacity of 737 mAh g−1 (89.9% DoD) versus 633 mAh g−1 (77.2% DoD) of untreated zinc particles after a dwell time of 1 h in KOH. The silica coating reduced the direct contact of the zinc surface with the electrolyte and thus minimized the hydrogen evolution reaction, which led to an increased discharge capacity. Additionally, bismuth doping enhanced conductivity within the silica coating and increased zinc utilization. Those coated zinc particles inhibited corrosion, i.e., corrosion efficiency reached 87.9% compared to uncoated zinc. Additionally, the coating achieved a capacity retention of 90.9% (670 mAh g−1) after 48 h dwell time in 6 M KOH. The coatings were prepared by sol-gel technology and characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface determination.