Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Biotic interactions in species distribution modelling : 10 questions to guide interpretation and avoid false conclusions

Titelangaben

Dormann, Carsten F. ; Bobrowski, Maria ; Dehling, D. Matthias ; Harris, David J. ; Hartig, Florian ; Lischke, Heike ; Moretti, Marco D. ; Pagel, Jörn ; Pinkert, Stefan ; Schleuning, Matthias ; Schmidt, Susanne I. ; Sheppard, Christine S. ; Steinbauer, Manuel ; Zeuss, Dirk ; Kraan, Casper:
Biotic interactions in species distribution modelling : 10 questions to guide interpretation and avoid false conclusions.
In: Global Ecology and Biogeography. Bd. 27 (2018) Heft 9 . - S. 1004-1016.
ISSN 1466-822X
DOI: https://doi.org/10.1111/geb.12759

Abstract

Aim Recent studies increasingly use statistical methods to infer biotic interactions from co-occurrence information at a large spatial scale. However, disentangling biotic interactions from other factors that can affect co-occurrence patterns at the macroscale is a major challenge. ApproachFindingsWe present a set of questions that analysts and reviewers should ask to avoid erroneously attributing species association patterns to biotic interactions. Our questions relate to the appropriateness of data and models, the causality behind a correlative signal, and the problems associated with static data from dynamic systems. We summarize caveats reported by macroecological studies of biotic interactions and examine whether conclusions on the presence of biotic interactions are supported by the modelling approaches used. Irrespective of the method used, studies that set out to test for biotic interactions find statistical associations in species' co-occurrences. Yet, when compared with our list of questions, few purported interpretations of such associations as biotic interactions hold up to scrutiny. This does not dismiss the presence or importance of biotic interactions, but it highlights the risk of too lenient interpretation of the data. Combining model results with information from experiments and functional traits that are relevant for the biotic interaction of interest might strengthen conclusions. Main conclusionsMoving from species- to community-level models, including biotic interactions among species, is of great importance for process-based understanding and forecasting ecological responses. We hope that our questions will help to improve these models and facilitate the interpretation of their results. In essence, we conclude that ecologists have to recognize that a species association pattern in joint species distribution models will be driven not only by real biotic interactions, but also by shared habitat preferences, common migration history, phylogenetic history and shared response to missing environmental drivers, which specifically need to be discussed and, if possible, integrated into models.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: ISI:000448647200001
Institutionen der Universität: Profilfelder > Advanced Fields > Ökologie und Umweltwissenschaften
Forschungseinrichtungen > Forschungszentren > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Profilfelder
Profilfelder > Advanced Fields
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Fakultäten > Kulturwissenschaftliche Fakultät > Institut für Sportwissenschaft > Professur Sportökologie > Professur Sportökologie - Univ.-Prof. Dr. Manuel Jonas Steinbauer
Fakultäten
Fakultäten > Kulturwissenschaftliche Fakultät
Fakultäten > Kulturwissenschaftliche Fakultät > Institut für Sportwissenschaft
Fakultäten > Kulturwissenschaftliche Fakultät > Institut für Sportwissenschaft > Professur Sportökologie
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie
500 Naturwissenschaften und Mathematik > 580 Pflanzen (Botanik)
Eingestellt am: 03 Sep 2019 12:09
Letzte Änderung: 18 Nov 2022 10:54
URI: https://eref.uni-bayreuth.de/id/eprint/51877