Titelangaben
Kogut, Iurii ; Wollbrink, Alexander ; Steiner, Carsten ; Wulfmeier, Hendrik ; El Azzouzi, Fatima-Ezzahrae ; Moos, Ralf ; Fritze, Holger:
Linking the Electrical Conductivity and Non-Stoichiometry of Thin Film Ce1−xZrxO2−δ by a Resonant Nanobalance Approach.
In: Materials.
Bd. 14
(2021)
.
- No. 748.
ISSN 1996-1944
DOI: https://doi.org/10.3390/ma14040748
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID In-situ-Verfahren zur Bestimmung hoher Sauerstoffdefizite in Cer-Zirkon-Mischoxiden für den Einsatz in der Abgasnachbehandlung MO 1060/29-1 |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
Bulk ceria-zirconia solid solutions (Ce1−xZrxO2−δ, CZO) are highly suited for application as oxygen storage materials in automotive three-way catalytic converters (TWC) due to the high levels of achievable oxygen non-stoichiometry δ. In thin film CZO, the oxygen storage properties are expected to be further enhanced. The present study addresses this aspect. CZO thin films with 0 ≤ x ≤ 1 were investigated. A unique nano-thermogravimetric method for thin films that is based on the resonant nanobalance approach for high-temperature characterization of oxygen non-stoichiometry in CZO was implemented. The high-temperature electrical conductivity and the non-stoichiometry δ of CZO were measured under oxygen partial pressures pO2 in the range of 10−24–0.2 bar. Markedly enhanced reducibility and electronic conductivity of CeO2-ZrO2 as compared to CeO2−δ and ZrO2 were observed. A comparison of temperature- and pO2-dependences of the non-stoichiometry of thin films with literature data for bulk Ce1−xZrxO2−δ shows enhanced reducibility in the former. The maximum conductivity was found for Ce0.8Zr0.2O2−δ, whereas Ce0.5Zr0.5O2-δ showed the highest non-stoichiometry, yielding δ = 0.16 at 900 °C and pO2 of 10−14 bar. The defect interactions in Ce1−xZrxO2−δ are analyzed in the framework of defect models for ceria and zirconia.