Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Appropriate Reliance on AI Advice : Conceptualization and the Effect of Explanations

Titelangaben

Schemmer, Max ; Kühl, Niklas ; Benz, Carina ; Bartos, Andrea ; Satzger, Gerhard:
Appropriate Reliance on AI Advice : Conceptualization and the Effect of Explanations.
In: Proceedings of the 28th International Conference on Intelligent User Interfaces : IUI '23. - New York, NY, USA : Association for Computing Machinery , 2023 . - S. 410-422
ISBN 979-8-4007-0106-1
DOI: https://doi.org/10.1145/3581641.3584066

Abstract

AI advice is becoming increasingly popular, e.g., in investment and medical treatment decisions. As this advice is typically imperfect, decision-makers have to exert discretion as to whether actually follow that advice: they have to “appropriately” rely on correct and turn down incorrect advice. However, current research on appropriate reliance still lacks a common definition as well as an operational measurement concept. Additionally, no in-depth behavioral experiments have been conducted that help understand the factors influencing this behavior. In this paper, we propose Appropriateness of Reliance (AoR) as an underlying, quantifiable two-dimensional measurement concept. We develop a research model that analyzes the effect of providing explanations for AI advice. In an experiment with 200 participants, we demonstrate how these explanations influence the AoR, and, thus, the effectiveness of AI advice. Our work contributes fundamental concepts for the analysis of reliance behavior and the purposeful design of AI advisors.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Keywords: Human-AI Complementarity; Appropriate Reliance; Human-AI Collaboration; Explainable AI
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Wirtschaftsinformatik > Lehrstuhl Wirtschaftsinformatik - Univ.-Prof. Dr.-Ing. Niklas Kühl
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
Eingestellt am: 03 Mai 2023 08:48
Letzte Änderung: 03 Mai 2023 08:48
URI: https://eref.uni-bayreuth.de/id/eprint/76159